Desvendando o potencial do biossurfactante produzido por Pseudomonas aeruginosa a partir de resíduos agroindustriais da Amazônia como agente estabilizador e formador de nanoemulsões antibacterianas

Autores

  • Yara Gomes Da Conceição Universidade Federal do Sul e Sudeste do Pará, Programa de Pós-Graduação em Química, Laboratório de Bioensaios e Bioprocessos. PA, Brasil. https://orcid.org/0009-0002-8145-2641
  • Giulian César Da Silva Sá Universidade Federal do Sul e Sudeste do Pará, Programa de Pós-Graduação em Química, Laboratório de Bioensaios e Bioprocessos. PA, Brasil. https://orcid.org/0000-0002-4734-4228
  • Alan Moura Feio Universidade Federal do Sul e Sudeste do Pará, Programa de Pós-Graduação em Química, Laboratório de Bioensaios e Bioprocessos. PA, Brasil. https://orcid.org/0000-0001-5087-1857
  • Lucas Mariano De Siqueira Pimentel Universidade Federal do Sul e Sudeste do Pará, Instituto de Estudos em Saúde e Biológicas, Laboratório de Bioensaios e Bioprocessos. PA, Brasil. https://orcid.org/0009-0003-8225-1144
  • Joane De Almeida Alves Universidade Federal do Sul e Sudeste do Pará, Instituto de Estudos em Saúde e Biológicas, Laboratório de Bioensaios e Bioprocessos. PA, Brasil. https://orcid.org/0009-0002-1821-9206
  • Glenda Soares Gomes Universidade Federal do Sul e Sudeste do Pará, Instituto de Estudos em Saúde e Biológicas, Laboratório de Bioensaios e Bioprocessos. PA, Brasil. https://orcid.org/0009-0009-2194-0978
  • Evelly Oliveira Ramos Universidade Federal do Sul e Sudeste do Pará, Instituto de Estudos em Saúde e Biológicas, Laboratório de Bioensaios e Bioprocessos. PA, Brasil. https://orcid.org/0009-0005-9794-6111
  • Viviane De Oliveira Freitas Lione Universidade Federal do Rio de Janeiro, Faculdade de Farmácia, Laboratório de Bioensaios Farmacêuticos. Rio de Janeiro, Brasil. https://orcid.org/0000-0003-4225-698X
  • Kattya Gyselle De Holanda e Silva Universidade Federal do Rio de Janeiro, Faculdade de Farmácia, Laboratório de Bioensaios Farmacêuticos. Rio de Janeiro, Brasil. https://orcid.org/0000-0002-8750-1726
  • Ulisses De Pádua Pereira Universidade Estadual de Londrina, Centro de Ciências Agrárias, Laboratório de Bacteriologia em Peixes. Paraná, Brasil. https://orcid.org/0000-0003-4868-4459
  • Pamela Dias Rodrigues Universidade Federal da Bahia, Departamento de Química Inorgânica e Geral, Laboratório de Cinética e Dinâmica Molecular. BA, Brasil. https://orcid.org/0000-0001-5334-1990
  • Cristina Maria Quintella Universidade Federal da Bahia, Departamento de Química Inorgânica e Geral, Laboratório de Cinética e Dinâmica Molecular. BA, Brasil. https://orcid.org/0000-0002-3827-7625
  • Emilly Cruz Da Silva Universidade Federal do Sul e Sudeste do Pará, Programa de Pós-Graduação em Química, Laboratório de Bioensaios e Bioprocessos. PA, Brasil. https://orcid.org/0000-0001-9755-4875
  • Pedro de Souza Quevedo  Universidade Federal do Sul e Sudeste do Pará, Instituto de Estudos do Trópico Úmido, Laboratório de Parasitologia. PA, Brasil. https://orcid.org/0000-0002-5774-5017
  • Sidnei Cerqueira Dos Santos Universidade Federal do Sul e Sudeste do Pará, Programa de Pós-Graduação em Química, Laboratório de Bioensaios e Bioprocessos. PA, Brasil. https://orcid.org/0000-0003-1169-256X

DOI:

https://doi.org/10.17921/1415-6938.2025v29n2p376-396

Resumo

Copaíba (Copaifera L.) e andiroba (Carapa guianensis Aubl.) são árvores tropicais nativas da região amazônica, comumente processadas para extrair óleos com diversas aplicações nutricionais, econômicas e farmacológicas. Esses óleos exibem propriedades antimicrobianas contra uma ampla gama de bactérias, incluindo aquelas responsáveis pela mastite bovina, uma condição inflamatória prevalente que afeta as glândulas mamárias das vacas. No entanto, devido à sua natureza hidrofóbica, a formulação de terapias eficazes usando esses óleos apresenta desafios. Além disso, o descarte inadequado de subprodutos do processamento dessas árvores, particularmente a andiroba, resulta em repercussões econômicas, sociais e ambientais significativas. Este estudo investigou o uso potencial da biomassa residual do processamento do fruto da andiroba para a produção de um biossurfactante ramnolipídico pela bactéria Pseudomonas aeruginosa, designada como BSAW. O BSAW serve como um agente estabilizador e formador para uma nanoemulsão óleo-água contendo óleo de copaíba (NEBSAW) por meio de métodos de alta energia, com propriedades antibacterianas contra bactérias causadoras de mastite bovina. Demonstrando índices favoráveis de rendimento e atividade emulsificante, o BSAW auxiliou no encapsulamento do óleo de copaíba, garantindo a estabilidade física do NEBSAW e aumentando seu efeito antimicrobiano, particularmente contra Streptococcus agalactiae, Klebsiella spp. e Corynebacterium bovis. Este estudo destacou o potencial de aproveitar a biomassa residual do processamento de frutas amazônicas para desenvolver bioprodutos ecologicamente corretos e comercialmente competitivos. Esta abordagem fortalece o valor dos biossurfactantes ramnolipídicos como alternativas ambientalmente viáveis para o desenvolvimento de nanoemulsões, acentuando a importância da biodiversidade regional no fomento de soluções inovadoras e ecologicamente conscientes.

Downloads

Não há dados estatísticos.

Referências

ALAM, A. et al. Antioxidant, antibacterial, and anticancer activity of ultrasonic nanoemulsion of Cinnamomum cassia L. essential oil. Plants, v.12, n.e834, 2023. doi: https://doi.org/10.3390/plants12040834

ALBERT, J.S. et al. Human impacts outpace natural processes in the Amazon. Science, v.379, n.6630, p.1-9, 2023. doi: https://doi.org/10.1126/science.abo5003

AL-SAKKAF, M.K.; ONAIZI, S.A. Effects of emulsification factors on the characteristics of crude oil emulsions stabilized by chemical and biosurfactants: A review. Fuel, v.361, n.e130604, 2024. doi: https://doi.org/10.1016/j.fuel.2023.130604

ASADINEZHAD, S. et al. Effect of different parameters on orange oil nanoemulsion particle size: combination of low energy and high energy methods. J. Food Meas. Charact., v.13, p.2501-2509, 2019. doi: https://doi.org/10.1007/s11694-019-00170-z

ASHRAF, A.; IMRAN, M. Causes, types, etiological agents, prevalence, diagnosis, treatment, prevention, effects on human health and future aspects of bovine mastitis. Anim. Health Res. Rev., v.21, n.36-49, 2020. doi: https://doi.org/10.1017/S1466252319000094

BARROS, R.R. Antimicrobial resistance among beta-hemolytic Streptococcus in Brazil: An overview. Antibiotics, v.10, p.1-10, 2021. DOI: https://doi.org/10.3390/antibiotics10080973

BERRY, J.D. et al. Measurement of surface and interfacial tension using pendant drop tensiometry. J. Colloid Interface Sci., v.454, p.226-237, 2015. doi: https://doi.org/10.1016/j.jcis.2015.05.012

BOMFIM, C.A. et al. Brief history of biofertilizers in Brazil: from conventional approaches to new biotechnological solutions. J. Microbiol., v.52, p.2215-2232, 2021. doi: https://doi.org/10.1007/s42770-021-00618-9

BRASIL. Política Nacional de Plantas Medicinais e Fitoterápicos (Portuguese). 2006. Disponible in: https://bvsms.saude.gov.br/bvs/publicacoes/politica_nacional_fitoterapicos.pdf, 2006.

CAMILIOS-NETO, D. et al. Production of rhamnolipids in solid-state cultivation using a mixture of sugarcane bagasse and corn bran supplemented with glycerol and soybean oil. Appl. Microbiol. Biotechnol., v.89, p.1395-1403, 2011. doi: https://doi.org/10.1007/s00253-010-2987-3

CAMPANHOLI, K.S.S. et al. Copaiba oil-based emulsion as a natural chemotherapeutic agent for the treatment of bovine mastitis: In vivo studies. Pharmaceutics, v.15, p.1-9, 2023. doi: https://doi.org/10.3390/pharmaceutics15020346

CARCIONE, D. et al. New antimicrobials for gram-positive sustained infections: A comprehensive guide for clinicians. Pharmaceuticals, v.16, n.e1304, 2023. doi: https://doi.org/10.3390/ph16091304

CHANG, Y.; MCCLEMENTS, D.J. Optimization of orange oil nanoemulsion formation by isothermal low-energy methods: Influence of the oil phase, surfactant, and temperature. J. Agric. Food Chem., v.62, p.2306-2312, 2014. doi: https://doi.org/10.1021/jf500160y

CHENG, W.N.; HAN, S.G. Bovine mastitis: risk factors, therapeutic strategies, and alternative treatments - A review. Asian-Australas J. Anim. Sci., v.33, p.1699-1713, 2020. doi: https://doi.org/10.5713/ajas.20.0156

CHISHTI, M.A.; AFZAL M., MUNEER, R. Effect of immunopotentiating agents on subclinical mastitis in cattle and buffaloes. Asian-Australas J. Anim. Sci., v.5, p.733-736. doi: https://doi.org/10.5713/ajas.1992.733

CLSI - Clinical and Laboratory Standards Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved standard M07-A10. Wayne, 2015.

CLSI - Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Test for Bacteria Isolated from Animals. Approved Standard M31-A3. Wayne, 2017.

DAS, M.; DAS, S.K.; MUKHERJEE, R.K. Surface active properties of the culture filtrates of a Micrococcus species grown on n-alkanes and sugars. Bioresour. Technol., v.63, p231-235, 1998. doi: https://doi.org/10.1016/S0960-8524(97)00133-8

DAVEREY, A. et al. Sophorolipid: a glycolipid biosurfactant as a potential therapeutic agent against COVID-19. Bioengineered, v.12, p.9550-9560, 2021. doi: https://doi.org/10.1080/21655979.2021.1997261

DEEPIKA, K.V. et al. Optimization of rhamnolipid biosurfactant production by mangrove sediment bacterium Pseudomonas aeruginosa KVD-HR42 using response surface methodology. Biocatal. Agric. Biotechnol., v.5, p.38-47, 2016. doi: https://doi.org/10.1016/j.bcab.2015.11.006

DIAS, K.K.B. et al. Biological activities from andiroba (Carapa guianensis Aublet.) and its biotechnological applications: a systematic review. Arab. J. Chem. v.16, n.e104629, 2023. doi: https://doi.org/10.1016/j.arabjc.2023.104629

DOMÍNGUEZ RIVERA, Á. et al. Advances on research in the use of agro-industrial waste in biosurfactant production. World J. Microbiol. Biotechnol., v.35, n.e155, 2019. doi: https://doi.org/10.1007/s11274-019-2729-3

DONSÌ, F.; FERRARI, G. Essential oil nanoemulsions as antimicrobial agents in food. J. Biotechnol., v.233, p.106-120, 2016. doi: https://doi.org/10.1016/j.jbiotec.2016.07.005

ELAKKIYA, V.T. et al. Studies on antibacterial and chemotaxis properties of Pseudomonas aeruginosa TEN01 biomass-derived sustainable biosurfactant. Chemosphere, v.285, n.e131381, 2021. doi: https://doi.org/10.1016/j.chemosphere.2021.131381

ELLWANGER, J.H. et al. Beyond diversity loss and climate change: Impacts of Amazon deforestation on infectious diseases and public health. An. Acad. Bras. Cienc., v.92, p.1-33, 2020. doi: https://doi.org/10.1590/0001-3765202020191375

ERAS-MUÑOZ, E. et al. Microbial biosurfactants: a review of recent environmental applications. Bioengineered, v.13, p.12365-12391, 2022. doi: https://doi.org/10.1080/21655979.2022.2074621

FDA - Food and Drug Administration. Guidance for industry considering whether an FDA-regulated product involves the application of Nanotechnology. Silver Spring, 2014.

FRANKLYNE, J.S.; MUKHERJEE, A.; CHANDRASEKARAN, N. Essential oil micro- and nanoemulsions: Promising roles in antimicrobial therapy targeting human pathogens. Lett. Appl. Microbiol., v.63, p.322-334, 2016. doi: https://doi.org/10.1111/lam.12631

GANESAN, N.G. et al. Synergy evaluation between diverse biosurfactants toward the formulation of green oil-in-water nanoemulsions by ultrasonication method. J. Clean Prod., v.400, n.e136735, 2023. doi: https://doi.org/10.1016/j.jclepro.2023.136735

GARCIA, C.R. et al. Nanoemulsion delivery systems for enhanced efficacy of antimicrobials and essential oils. Biomater. Sci., v.10, p.633-653, 2022. doi: https://doi.org/10.1039/D1BM01537K

GEORGE, S.; JAYACHANDRAN, K. Analysis of rhamnolipid biosurfactants produced through submerged fermentation using orange fruit peelings as sole carbon source. Appl. Biochem. Biotechnol., v.158, p.694-705, 2009. doi: https://doi.org/10.1007/s12010-008-8337-6

GERGOVA, R.T. et al. Emergence of multidrug-resistant and -hypervirulent Streptococcus agalactiae in Bulgarian patients. Balkan Med. J., v.38, p.143-144, 2021. doi: https://doi.org/10.5152/balkanmedj.2021.20152

GMI - Global Market Insights. Biosurfactants Market: By Product (Sophorolipids, Rhamnolipids, Alkyl Polyglucosides, Sucrose Esters, Lipopeptides, Phospholipids), By Application (Personal Care, Industrial Cleaners, Food Processing, Textiles, Pharma, Bioremediation), & Forecast, 2023-2032, 2024. In: gminsights.com/industry-analysis/biosurfactants-market-report

GURPRET, K.; SINGH, S.K. Review of nanoemulsion formulation and characterization techniques. Indian J Pharm. Sci., v.80, p.781-789, 2018. doi: https://doi.org/10.4172/pharmaceutical-sciences.1000422

HO, T.M.; ABIK, F.; MIKKONEN, K.S. An overview of nanoemulsion characterization via atomic force microscopy. Crit. Rev. Food Sci. Nutr., v.62, p.4908-4928, 2022. doi: https://doi.org/10.1080/10408398.2021.1879727

ISLAM, M.M.; KASHEM, M.A. Farmers’ use of Ethno-Veterinary Medicine (EVM) in the rearing and management of livestock: An empirical study in Bangladesh. J. Sustain. Agric., v.13, p.39-56, 1999. doi: https://doi.org/10.1300/J064v13n04_05

JAHAN, R. et al. Biosurfactants, natural alternatives to synthetic surfactants: Physicochemical properties and applications. Adv. Colloid Interface Sci., v.275, n.e102061, 2020. doi: https://doi.org/10.1016/j.cis.2019.102061

JAIN, R.M. et al. Effect of unconventional carbon sources on biosurfactant production and its application in bioremediation. Int. J. Biol. Macromol., v.62, p.52-58, 2013. doi: https://doi.org/10.1016/j.ijbiomac.2013.08.030

JOHNSON, P. et al. Effect of synthetic surfactants on the environment and the potential for substitution by biosurfactants. Adv. Colloid Interface Sci., v.288, n.102340, 2021. DOI: https://doi.org/10.1016/j.cis.2020.102340

KABELITZ, T. et al. The role of Streptococcus spp. in bovine mastitis. Microorganisms, v.9, n.e1497, 2021. doi: https://doi.org/10.3390/microorganisms9071497

KOTTA, S. et al. Coconut oil-based resveratrol nanoemulsion: Optimization using response surface methodology, stability assessment and pharmacokinetic evaluation. Food Chem., v.357, n.e129721, 2021. doi: https://doi.org/10.1016/j.foodchem.2021.129721

KOUL, B.; YAKOOB, M.; SHAH, M.P. Agricultural waste management strategies for environmental sustainability. Environ. Res., v.206, n.e112285, 2022. doi: https://doi.org/10.1016/j.envres.2021.112285

LIPINSKI, C.A. Poor aqueous solubility: an industry wide problem in drug discovery. Am. Pharm. Rev., v.5, p.82-85, 2002.

MAHDI JAFARI, S.; HE, Y.; BHANDARI, B. Nano-emulsion production by sonication and microfluidization: a comparison. Int. J. Food Prop., v.9, p.475-485, 2006. doi: https://doi.org/10.1080/10942910600596464

MINAKSHI, P. et al. Nano-antimicrobials: A new paradigm for combating mycobacterial resistance. Curr. Pharm. Des., v.25, p.1554-1579, 2019. doi: https://doi.org/10.2174/1381612825666190620094041

MISHRA, A. et al. Optimization of process inputs for the synthesis of waste rice bran oil isolated Pseudomonas aeruginosa MTCC 424 biosurfactant using response surface methodology for oil recovery applications. Bioresour. Technol. Rep., v.14, p.e100653, 2021. doi: https://doi.org/10.1016/j.biteb.2021.100653

MIYAZAWA, T. et al. A critical review of the use of surfactant-coated nanoparticles in Nanomedicine and Food Nanotechnology. Int. J. Nanomedicine, v.16, p.3937-3999, 2021. doi: https://doi.org/10.2147/IJN.S298606

MORALES-UBALDO, A.L. et al. Bovine mastitis, a worldwide impact disease: Prevalence, antimicrobial resistance, and viable alternative approaches. Vet. Anim. Sci., v.21, n.e100306, 2023. doi: https://doi.org/10.1016/j.vas.2023.100306

NECULAI-VALEANU, A-S.; ARITON, A-M. Udder health monitoring for prevention of bovine mastitis and improvement of milk quality. Bioengineering, v.9, n.e608, 2022. doi: https://doi.org/10.3390/bioengineering9110608

NERC - Regional Conference for the Near East. 37th Session, Amman, Jordan, 5-8 February 2024 and 4-5 March 2024. NERC/24/9: How to fight against Food Loss and Waste, 2024. In: https://www.fao.org/about/meetings/regional-conferences/nerc37/documents/en/

NEWMAN, D.J.; CRAGG, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod., v.83, p.770-803, 2020. doi: https://doi.org/10.1021/acs.jnatprod.9b01285

NIE, Y. et al. Stability and bioactivity evaluation of black pepper essential oil nanoemulsion. Heliyon, v.9, p.1-10, 2023. doi: https://doi.org/10.1016/j.heliyon.2023.e14730

NITSCHKE, M.; MARANGON, C.A. Microbial surfactants in nanotechnology: recent trends and applications. Crit. Rev. Biotechnol., v.42, p.294-310, 2022. doi: https://doi.org/10.1080/07388551.2021.1933890

OCHOA, A.A. et al. Preparation and characterization of curcumin nanoemulsions obtained by thin-film hydration emulsification and ultrasonication methods. Rev. Mex. Ing. Quim., v.15, p.79-90, 2016.

OLIVEIRA, D.F.F. et al. Antimicrobial potential of copaiba oil (Copaifera multijuga Hayne-Leguminosae) against bubaline mastitis multiresistant isolates. An. Acad. Bras. Cienc., v.92, p.1-12, 2020. doi: https://doi.org/10.1590/0001-3765202020200521

ONAIZI, S.A. et al. Crude oil/water nanoemulsions stabilized by biosurfactant: Stability and pH-Switchability. J. Pet. Sci. Eng., v.198, n.e108173, 2021. doi: https://doi.org/10.1016/j.petrol.2020.108173

OSANLOO, M. et al. Nanoemulsion and nanogel containing Artemisia dracunculus essential oil; larvicidal effect and antibacterial activity. BMC Res. Notes, v.15, n.e276, 2022. doi: https://doi.org/10.1186/s13104-022-06135-8

PELE, M.A. et al. Conversion of renewable substrates for biosurfactant production by Rhizopus arrhizus UCP 1607 and enhancing the removal of diesel oil from marine soil. Electron J. Biotechnol., v.38, p.40-48, 2019. doi: https://doi.org/10.1016/j.ejbt.2018.12.003

POONGUZHALI, P. et al. Optimization of biosurfactant production by Pseudomonas aeruginosa using rice water and its competence in controlling Fusarium wilt of Abelmoschus esculentus. S. Afr. J. Bot., v.151, p.144-157, 2022. doi: https://doi.org/10.1016/j.sajb.2021.12.016

QAMAR, S.A.; PACIFICO, S. Cleaner production of biosurfactants via bio-waste valorization: A comprehensive review of characteristics, challenges, and opportunities in bio-sector applications. J. Environ. Chem. Eng., v.11, n.e111555, 2023. doi: https://doi.org/10.1016/j.jece.2023.111555

SÁ, G.C.S. et al. Tephrosia toxicaria (Sw.) Pers. extracts: Screening by examining aedicidal action under laboratory and field conditions along with its antioxidant, antileishmanial, and antimicrobial activities. PLoS One, v.18, n.e0275835, 2023. doi: https://doi.org/10.1371/journal.pone.0275835

SANTOS, S.C. et al. Production and characterization of rhamnolipids by Pseudomonas aeruginosa isolated in the Amazon region, and potential antiviral, antitumor, and antimicrobial activity. Sci. Rep., v.14, n.e4629, 2024. doi: https://doi.org/10.1038/s41598-024-54828-w

SARAÇ, T. et al. Estimation of biosurfactant production parameters and yields without conducting additional experiments on a larger production scale. J. Microbiol. Methods, v.202, n.e106597, 2022. doi: https://doi.org/10.1016/j.mimet.2022.106597

SARAFZADEH, P. et al. Enterobacter cloacae as biosurfactant producing bacterium: differentiating its effects on interfacial tension and wettability alteration Mechanisms for oil recovery during MEOR process. Colloids Surf B Biointerfaces, v.105, p.223-229, 2013. doi: https://doi.org/10.1016/j.colsurfb.2012.12.042

SHAKEEL, F. et al. Nanoemulsions as potential vehicles for transdermal and dermal delivery of hydrophobic compounds: an overview. Expert Opin Drug Deliv., v.9, p.953-974, 2012. doi: https://doi.org/10.1517/17425247.2012.696605

SINGH, Y. et al. Nanoemulsion: Concepts, development and applications in drug delivery. J. Control. Release, v.252, p.28-49, 2017. doi: https://doi.org/10.1016/j.jconrel.2017.03.008

SITTISART, P.; GASALUCK, P. Biosurfactant production by Lactobacillus plantarum MGL-8 from mango waste. J. Appl. Microbiol., v.132, p.2883-2893, 2022. doi: https://doi.org/10.1111/jam.15452

SONG, B.; SPRINGER, J. Determination of interfacial tension from the profile of a pendant drop using computer-aided image processing. J. Colloid Interface Sci., v.184, p.64-76, 1996. doi: https://doi.org/10.1006/jcis.1996.0597

SOUTO, W.M.S. et al. Animal-based medicines used in ethnoveterinary practices in the semi-arid region of Northeastern Brazil. An. Acad. Bras. Cienc., v.84, p.669-678, 2012. doi: https://doi.org/10.1590/S0001-37652012005000038

SUNDARAM, T. et al. Advancements in biosurfactant production using agro-industrial waste for industrial and environmental applications. Front. Microbiol., v.15, n.e1357302, 2024. doi: https://doi.org/10.3389/fmicb.2024.1357302

THAKUR, P. et al. Rhamnolipid the glycolipid biosurfactant: Emerging trends and promising strategies in the field of biotechnology and biomedicine. Microb. Cell Fact., v.20, p.1-15, 2021. doi: https://doi.org/10.1186/s12934-020-01497-9

VALÉRIO FILHO, A.V. et al. Brazilian agroindustrial wastes as a potential resource of bioative compounds and their antimicrobial and antioxidant activities. Molecules, v.27, p.1-16, 2022. doi: https://doi.org/10.3390/molecules27206876

VEIGA JUNIOR, V.F.; PINTO, A.C.O gênero Copaifera L. Quim Nova, v.25, p.273-286, 2002. doi: https://doi.org/10.1590/S0100-40422002000200016

WANG, Z. et al. GC–MS-Based metabolome and metabolite regulation in serum-resistant Streptococcus agalactiae. J. Proteome Res., v.15, p.2246-2253, 2016. doi: https://doi.org/10.1021/acs.jproteome.6b00215

WEBSTER, D. et al. Antifungal activity of medicinal plant extracts; preliminary screening studies. J. Ethnopharmacol., v.115, p.140-146, 2008. doi: https://doi.org/10.1016/j.jep.2007.09.014

ZHAO, F. et al. Enhanced production of mono-rhamnolipid in Pseudomonas aeruginosa and application potential in agriculture and petroleum industry. Bioresour. Technol., v.323, n.e124605, 2021. doi: https://doi.org/10.1016/j.biortech.2020.124605

Downloads

Publicado

2025-06-02

Como Citar

GOMES DA CONCEIÇÃO, Yara et al. Desvendando o potencial do biossurfactante produzido por Pseudomonas aeruginosa a partir de resíduos agroindustriais da Amazônia como agente estabilizador e formador de nanoemulsões antibacterianas. Ensaios e Ciência: Ciências Biológicas, Agrárias e da Saúde, [S. l.], v. 29, n. 2, p. 376–396, 2025. DOI: 10.17921/1415-6938.2025v29n2p376-396. Disponível em: https://ensaioseciencia.pgsscogna.com.br/ensaioeciencia/article/view/13727. Acesso em: 6 jun. 2025.

Edição

Seção

Artigos