Unveiling the Potential of Biosurfactant Produced by Pseudomonas aeruginosa from Amazonian Agro-Industrial Waste as Stabilizing Agent and Former of Antibacterial Nanoemulsions
DOI:
https://doi.org/10.17921/1415-6938.2025v29n2p376-396Abstract
Copaiba (Copaifera L.) and andiroba (Carapa guianensis Aubl.) are native tropical trees of the Amazon, extensively utilized for their oils, which possess diverse nutritional, economic, and pharmacological applications. These oils exhibit antimicrobial properties against various bacteria, including key pathogens implicated in bovine mastitis, a prevalent inflammatory condition affecting dairy cattle’s mammary glands. However, their hydrophobic characteristics pose challenges in formulating effective therapeutic agents. Furthermore, inadequate disposal of by-products from andiroba processing results in severe economic, social, and environmental repercussions. This study explores the feasibility of utilizing residual biomass from andiroba fruit processing to produce a rhamnolipid biosurfactant by the bacterium Pseudomonas aeruginosa, designated as BSAW. The extraction yield of BSAW was approximately 5 mg/mL, exhibiting an emulsifying activity of 60% and a surface tension reduction to 28 mN/m. At concentrations as low as 2.5 mg/mL, BSAW exhibited antibacterial activity against ATCC strains of Staphylococcus aureus and Streptococcus agalactiae, as well as clinical isolates of Escherichia coli, coagulase-positive and coagulase-negative Staphylococcus aureus, Klebsiella spp., and Corynebacterium bovis. Additionally, BSAW serves as a stabilizing agent for an oil-water nanoemulsion containing copaiba oil (NEBSAW) through high-energy methods, enhancing antimicrobial activity at concentrations below 0.02 mg/mL. This study underscores the potential of rhamnolipid biosurfactants as eco-friendly alternatives for nanoemulsion formulations and highlights the importance of regional biodiversity in driving innovative and environmentally responsible solutions. Future recommendations include optimizing extraction methodologies and investigating additional applications of BSAW to address unsustainable development practices.
Keywords: Natural Resources. Rhamnolipid. Bovine Mastitis.
Resumo
Copaíba (Copaifera L.) e andiroba (Carapa guianensis Aubl.) são árvores tropicais nativas da Amazônia, amplamente reconhecidas por seus óleos, que possuem aplicações significativas nas áreas nutricional, econômica e farmacológica. Os óleos extraídos dessas plantas demonstram propriedades antimicrobianas contra uma variedade de bactérias, incluindo patógenos relevantes associados à mastite bovina, uma condição inflamatória que afeta as glândulas mamárias do gado leiteiro. Entretanto, as características hidrofóbicas desses óleos limitam sua eficácia como agentes terapêuticos. Além disso, o descarte inadequado dos subprodutos gerados no processamento da andiroba acarreta sérias repercussões econômicas, sociais e ambientais. O presente estudo investigou a viabilidade do aproveitamento da biomassa residual oriunda do processamento do fruto da andiroba para a produção de um biossurfactante ramnolipídico pela bactéria Pseudomonas aeruginosa, designado BSAW. O rendimento da extração de BSAW foi de aproximadamente 5 mg/mL, apresentando atividade emulsificante de 60% e promovendo redução da tensão superficial para 28 mN/m. Em concentrações iniciais de 2,5 mg/mL, BSAW exibiu atividade antibacteriana contra cepas ATCC de Staphylococcus aureus e Streptococcus agalactiae, e isolados clínicos de Escherichia coli, S. aureus coagulase-positivo e coagulase-negativo, Klebsiella spp. e Corynebacterium bovis. Adicionalmente, BSAW revelou-se eficaz como um agente estabilizador de uma nanoemulsão óleo-água contendo óleo de copaíba (NEBSAW), quando produzida por métodos de alta energia, potencializando o efeito antimicrobiano em concentrações inferiores a 0,02 mg/mL. Este estudo ressalta o potencial dos biossurfactantes ramnolipídicos como alternativas ecologicamente sustentáveis para formulações de nanoemulsões, evidenciando a importância da biodiversidade regional na promoção de soluções inovadoras e ambientalmente responsáveis. Recomenda-se, para trabalhos futuros, a otimização das metodologias de extração e a exploração de aplicações adicionais de BSAW na mitigação dos impactos de práticas de desenvolvimento insustentáveis.
Palavras-chave: Recursos Naturais. Ramnolipídio. Mastite Bovina.
Downloads
References
ALAM, A. et al. Antioxidant, antibacterial, and anticancer activity of ultrasonic nanoemulsion of Cinnamomum cassia L. essential oil. Plants, v.12, n.e834, 2023. doi: https://doi.org/10.3390/plants12040834
ALBERT, J.S. et al. Human impacts outpace natural processes in the Amazon. Science, v.379, n.6630, p.1-9, 2023. doi: https://doi.org/10.1126/science.abo5003
AL-SAKKAF, M.K.; ONAIZI, S.A. Effects of emulsification factors on the characteristics of crude oil emulsions stabilized by chemical and biosurfactants: A review. Fuel, v.361, n.e130604, 2024. doi: https://doi.org/10.1016/j.fuel.2023.130604
ASADINEZHAD, S. et al. Effect of different parameters on orange oil nanoemulsion particle size: combination of low energy and high energy methods. J. Food Meas. Charact., v.13, p.2501-2509, 2019. doi: https://doi.org/10.1007/s11694-019-00170-z
ASHRAF, A.; IMRAN, M. Causes, types, etiological agents, prevalence, diagnosis, treatment, prevention, effects on human health and future aspects of bovine mastitis. Anim. Health Res. Rev., v.21, n.36-49, 2020. doi: https://doi.org/10.1017/S1466252319000094
BARROS, R.R. Antimicrobial resistance among beta-hemolytic Streptococcus in Brazil: An overview. Antibiotics, v.10, p.1-10, 2021. DOI: https://doi.org/10.3390/antibiotics10080973
BERRY, J.D. et al. Measurement of surface and interfacial tension using pendant drop tensiometry. J. Colloid Interface Sci., v.454, p.226-237, 2015. doi: https://doi.org/10.1016/j.jcis.2015.05.012
BOMFIM, C.A. et al. Brief history of biofertilizers in Brazil: from conventional approaches to new biotechnological solutions. J. Microbiol., v.52, p.2215-2232, 2021. doi: https://doi.org/10.1007/s42770-021-00618-9
BRASIL. Política Nacional de Plantas Medicinais e Fitoterápicos (Portuguese). 2006. Disponible in: https://bvsms.saude.gov.br/bvs/publicacoes/politica_nacional_fitoterapicos.pdf, 2006.
CAMILIOS-NETO, D. et al. Production of rhamnolipids in solid-state cultivation using a mixture of sugarcane bagasse and corn bran supplemented with glycerol and soybean oil. Appl. Microbiol. Biotechnol., v.89, p.1395-1403, 2011. doi: https://doi.org/10.1007/s00253-010-2987-3
CAMPANHOLI, K.S.S. et al. Copaiba oil-based emulsion as a natural chemotherapeutic agent for the treatment of bovine mastitis: In vivo studies. Pharmaceutics, v.15, p.1-9, 2023. doi: https://doi.org/10.3390/pharmaceutics15020346
CARCIONE, D. et al. New antimicrobials for gram-positive sustained infections: A comprehensive guide for clinicians. Pharmaceuticals, v.16, n.e1304, 2023. doi: https://doi.org/10.3390/ph16091304
CHANG, Y.; MCCLEMENTS, D.J. Optimization of orange oil nanoemulsion formation by isothermal low-energy methods: Influence of the oil phase, surfactant, and temperature. J. Agric. Food Chem., v.62, p.2306-2312, 2014. doi: https://doi.org/10.1021/jf500160y
CHENG, W.N.; HAN, S.G. Bovine mastitis: risk factors, therapeutic strategies, and alternative treatments - A review. Asian-Australas J. Anim. Sci., v.33, p.1699-1713, 2020. doi: https://doi.org/10.5713/ajas.20.0156
CHISHTI, M.A.; AFZAL M., MUNEER, R. Effect of immunopotentiating agents on subclinical mastitis in cattle and buffaloes. Asian-Australas J. Anim. Sci., v.5, p.733-736. doi: https://doi.org/10.5713/ajas.1992.733
CLSI - Clinical and Laboratory Standards Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved standard M07-A10. Wayne, 2015.
CLSI - Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Test for Bacteria Isolated from Animals. Approved Standard M31-A3. Wayne, 2017.
DAS, M.; DAS, S.K.; MUKHERJEE, R.K. Surface active properties of the culture filtrates of a Micrococcus species grown on n-alkanes and sugars. Bioresour. Technol., v.63, p231-235, 1998. doi: https://doi.org/10.1016/S0960-8524(97)00133-8
DAVEREY, A. et al. Sophorolipid: a glycolipid biosurfactant as a potential therapeutic agent against COVID-19. Bioengineered, v.12, p.9550-9560, 2021. doi: https://doi.org/10.1080/21655979.2021.1997261
DEEPIKA, K.V. et al. Optimization of rhamnolipid biosurfactant production by mangrove sediment bacterium Pseudomonas aeruginosa KVD-HR42 using response surface methodology. Biocatal. Agric. Biotechnol., v.5, p.38-47, 2016. doi: https://doi.org/10.1016/j.bcab.2015.11.006
DIAS, K.K.B. et al. Biological activities from andiroba (Carapa guianensis Aublet.) and its biotechnological applications: a systematic review. Arab. J. Chem. v.16, n.e104629, 2023. doi: https://doi.org/10.1016/j.arabjc.2023.104629
DOMÍNGUEZ RIVERA, Á. et al. Advances on research in the use of agro-industrial waste in biosurfactant production. World J. Microbiol. Biotechnol., v.35, n.e155, 2019. doi: https://doi.org/10.1007/s11274-019-2729-3
DONSÌ, F.; FERRARI, G. Essential oil nanoemulsions as antimicrobial agents in food. J. Biotechnol., v.233, p.106-120, 2016. doi: https://doi.org/10.1016/j.jbiotec.2016.07.005
ELAKKIYA, V.T. et al. Studies on antibacterial and chemotaxis properties of Pseudomonas aeruginosa TEN01 biomass-derived sustainable biosurfactant. Chemosphere, v.285, n.e131381, 2021. doi: https://doi.org/10.1016/j.chemosphere.2021.131381
ELLWANGER, J.H. et al. Beyond diversity loss and climate change: Impacts of Amazon deforestation on infectious diseases and public health. An. Acad. Bras. Cienc., v.92, p.1-33, 2020. doi: https://doi.org/10.1590/0001-3765202020191375
ERAS-MUÑOZ, E. et al. Microbial biosurfactants: a review of recent environmental applications. Bioengineered, v.13, p.12365-12391, 2022. doi: https://doi.org/10.1080/21655979.2022.2074621
FDA - Food and Drug Administration. Guidance for industry considering whether an FDA-regulated product involves the application of Nanotechnology. Silver Spring, 2014.
FRANKLYNE, J.S.; MUKHERJEE, A.; CHANDRASEKARAN, N. Essential oil micro- and nanoemulsions: Promising roles in antimicrobial therapy targeting human pathogens. Lett. Appl. Microbiol., v.63, p.322-334, 2016. doi: https://doi.org/10.1111/lam.12631
GANESAN, N.G. et al. Synergy evaluation between diverse biosurfactants toward the formulation of green oil-in-water nanoemulsions by ultrasonication method. J. Clean Prod., v.400, n.e136735, 2023. doi: https://doi.org/10.1016/j.jclepro.2023.136735
GARCIA, C.R. et al. Nanoemulsion delivery systems for enhanced efficacy of antimicrobials and essential oils. Biomater. Sci., v.10, p.633-653, 2022. doi: https://doi.org/10.1039/D1BM01537K
GEORGE, S.; JAYACHANDRAN, K. Analysis of rhamnolipid biosurfactants produced through submerged fermentation using orange fruit peelings as sole carbon source. Appl. Biochem. Biotechnol., v.158, p.694-705, 2009. doi: https://doi.org/10.1007/s12010-008-8337-6
GERGOVA, R.T. et al. Emergence of multidrug-resistant and -hypervirulent Streptococcus agalactiae in Bulgarian patients. Balkan Med. J., v.38, p.143-144, 2021. doi: https://doi.org/10.5152/balkanmedj.2021.20152
GMI - Global Market Insights. Biosurfactants Market: By Product (Sophorolipids, Rhamnolipids, Alkyl Polyglucosides, Sucrose Esters, Lipopeptides, Phospholipids), By Application (Personal Care, Industrial Cleaners, Food Processing, Textiles, Pharma, Bioremediation), & Forecast, 2023-2032, 2024. In: gminsights.com/industry-analysis/biosurfactants-market-report
GURPRET, K.; SINGH, S.K. Review of nanoemulsion formulation and characterization techniques. Indian J Pharm. Sci., v.80, p.781-789, 2018. doi: https://doi.org/10.4172/pharmaceutical-sciences.1000422
HO, T.M.; ABIK, F.; MIKKONEN, K.S. An overview of nanoemulsion characterization via atomic force microscopy. Crit. Rev. Food Sci. Nutr., v.62, p.4908-4928, 2022. doi: https://doi.org/10.1080/10408398.2021.1879727
ISLAM, M.M.; KASHEM, M.A. Farmers’ use of Ethno-Veterinary Medicine (EVM) in the rearing and management of livestock: An empirical study in Bangladesh. J. Sustain. Agric., v.13, p.39-56, 1999. doi: https://doi.org/10.1300/J064v13n04_05
JAHAN, R. et al. Biosurfactants, natural alternatives to synthetic surfactants: Physicochemical properties and applications. Adv. Colloid Interface Sci., v.275, n.e102061, 2020. doi: https://doi.org/10.1016/j.cis.2019.102061
JAIN, R.M. et al. Effect of unconventional carbon sources on biosurfactant production and its application in bioremediation. Int. J. Biol. Macromol., v.62, p.52-58, 2013. doi: https://doi.org/10.1016/j.ijbiomac.2013.08.030
JOHNSON, P. et al. Effect of synthetic surfactants on the environment and the potential for substitution by biosurfactants. Adv. Colloid Interface Sci., v.288, n.102340, 2021. DOI: https://doi.org/10.1016/j.cis.2020.102340
KABELITZ, T. et al. The role of Streptococcus spp. in bovine mastitis. Microorganisms, v.9, n.e1497, 2021. doi: https://doi.org/10.3390/microorganisms9071497
KOTTA, S. et al. Coconut oil-based resveratrol nanoemulsion: Optimization using response surface methodology, stability assessment and pharmacokinetic evaluation. Food Chem., v.357, n.e129721, 2021. doi: https://doi.org/10.1016/j.foodchem.2021.129721
KOUL, B.; YAKOOB, M.; SHAH, M.P. Agricultural waste management strategies for environmental sustainability. Environ. Res., v.206, n.e112285, 2022. doi: https://doi.org/10.1016/j.envres.2021.112285
LIPINSKI, C.A. Poor aqueous solubility: an industry wide problem in drug discovery. Am. Pharm. Rev., v.5, p.82-85, 2002.
MAHDI JAFARI, S.; HE, Y.; BHANDARI, B. Nano-emulsion production by sonication and microfluidization: a comparison. Int. J. Food Prop., v.9, p.475-485, 2006. doi: https://doi.org/10.1080/10942910600596464
MINAKSHI, P. et al. Nano-antimicrobials: A new paradigm for combating mycobacterial resistance. Curr. Pharm. Des., v.25, p.1554-1579, 2019. doi: https://doi.org/10.2174/1381612825666190620094041
MISHRA, A. et al. Optimization of process inputs for the synthesis of waste rice bran oil isolated Pseudomonas aeruginosa MTCC 424 biosurfactant using response surface methodology for oil recovery applications. Bioresour. Technol. Rep., v.14, p.e100653, 2021. doi: https://doi.org/10.1016/j.biteb.2021.100653
MIYAZAWA, T. et al. A critical review of the use of surfactant-coated nanoparticles in Nanomedicine and Food Nanotechnology. Int. J. Nanomedicine, v.16, p.3937-3999, 2021. doi: https://doi.org/10.2147/IJN.S298606
MORALES-UBALDO, A.L. et al. Bovine mastitis, a worldwide impact disease: Prevalence, antimicrobial resistance, and viable alternative approaches. Vet. Anim. Sci., v.21, n.e100306, 2023. doi: https://doi.org/10.1016/j.vas.2023.100306
NECULAI-VALEANU, A-S.; ARITON, A-M. Udder health monitoring for prevention of bovine mastitis and improvement of milk quality. Bioengineering, v.9, n.e608, 2022. doi: https://doi.org/10.3390/bioengineering9110608
NERC - Regional Conference for the Near East. 37th Session, Amman, Jordan, 5-8 February 2024 and 4-5 March 2024. NERC/24/9: How to fight against Food Loss and Waste, 2024. In: https://www.fao.org/about/meetings/regional-conferences/nerc37/documents/en/
NEWMAN, D.J.; CRAGG, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod., v.83, p.770-803, 2020. doi: https://doi.org/10.1021/acs.jnatprod.9b01285
NIE, Y. et al. Stability and bioactivity evaluation of black pepper essential oil nanoemulsion. Heliyon, v.9, p.1-10, 2023. doi: https://doi.org/10.1016/j.heliyon.2023.e14730
NITSCHKE, M.; MARANGON, C.A. Microbial surfactants in nanotechnology: recent trends and applications. Crit. Rev. Biotechnol., v.42, p.294-310, 2022. doi: https://doi.org/10.1080/07388551.2021.1933890
OCHOA, A.A. et al. Preparation and characterization of curcumin nanoemulsions obtained by thin-film hydration emulsification and ultrasonication methods. Rev. Mex. Ing. Quim., v.15, p.79-90, 2016.
OLIVEIRA, D.F.F. et al. Antimicrobial potential of copaiba oil (Copaifera multijuga Hayne-Leguminosae) against bubaline mastitis multiresistant isolates. An. Acad. Bras. Cienc., v.92, p.1-12, 2020. doi: https://doi.org/10.1590/0001-3765202020200521
ONAIZI, S.A. et al. Crude oil/water nanoemulsions stabilized by biosurfactant: Stability and pH-Switchability. J. Pet. Sci. Eng., v.198, n.e108173, 2021. doi: https://doi.org/10.1016/j.petrol.2020.108173
OSANLOO, M. et al. Nanoemulsion and nanogel containing Artemisia dracunculus essential oil; larvicidal effect and antibacterial activity. BMC Res. Notes, v.15, n.e276, 2022. doi: https://doi.org/10.1186/s13104-022-06135-8
PELE, M.A. et al. Conversion of renewable substrates for biosurfactant production by Rhizopus arrhizus UCP 1607 and enhancing the removal of diesel oil from marine soil. Electron J. Biotechnol., v.38, p.40-48, 2019. doi: https://doi.org/10.1016/j.ejbt.2018.12.003
POONGUZHALI, P. et al. Optimization of biosurfactant production by Pseudomonas aeruginosa using rice water and its competence in controlling Fusarium wilt of Abelmoschus esculentus. S. Afr. J. Bot., v.151, p.144-157, 2022. doi: https://doi.org/10.1016/j.sajb.2021.12.016
QAMAR, S.A.; PACIFICO, S. Cleaner production of biosurfactants via bio-waste valorization: A comprehensive review of characteristics, challenges, and opportunities in bio-sector applications. J. Environ. Chem. Eng., v.11, n.e111555, 2023. doi: https://doi.org/10.1016/j.jece.2023.111555
SÁ, G.C.S. et al. Tephrosia toxicaria (Sw.) Pers. extracts: Screening by examining aedicidal action under laboratory and field conditions along with its antioxidant, antileishmanial, and antimicrobial activities. PLoS One, v.18, n.e0275835, 2023. doi: https://doi.org/10.1371/journal.pone.0275835
SANTOS, S.C. et al. Production and characterization of rhamnolipids by Pseudomonas aeruginosa isolated in the Amazon region, and potential antiviral, antitumor, and antimicrobial activity. Sci. Rep., v.14, n.e4629, 2024. doi: https://doi.org/10.1038/s41598-024-54828-w
SARAÇ, T. et al. Estimation of biosurfactant production parameters and yields without conducting additional experiments on a larger production scale. J. Microbiol. Methods, v.202, n.e106597, 2022. doi: https://doi.org/10.1016/j.mimet.2022.106597
SARAFZADEH, P. et al. Enterobacter cloacae as biosurfactant producing bacterium: differentiating its effects on interfacial tension and wettability alteration Mechanisms for oil recovery during MEOR process. Colloids Surf B Biointerfaces, v.105, p.223-229, 2013. doi: https://doi.org/10.1016/j.colsurfb.2012.12.042
SHAKEEL, F. et al. Nanoemulsions as potential vehicles for transdermal and dermal delivery of hydrophobic compounds: an overview. Expert Opin Drug Deliv., v.9, p.953-974, 2012. doi: https://doi.org/10.1517/17425247.2012.696605
SINGH, Y. et al. Nanoemulsion: Concepts, development and applications in drug delivery. J. Control. Release, v.252, p.28-49, 2017. doi: https://doi.org/10.1016/j.jconrel.2017.03.008
SITTISART, P.; GASALUCK, P. Biosurfactant production by Lactobacillus plantarum MGL-8 from mango waste. J. Appl. Microbiol., v.132, p.2883-2893, 2022. doi: https://doi.org/10.1111/jam.15452
SONG, B.; SPRINGER, J. Determination of interfacial tension from the profile of a pendant drop using computer-aided image processing. J. Colloid Interface Sci., v.184, p.64-76, 1996. doi: https://doi.org/10.1006/jcis.1996.0597
SOUTO, W.M.S. et al. Animal-based medicines used in ethnoveterinary practices in the semi-arid region of Northeastern Brazil. An. Acad. Bras. Cienc., v.84, p.669-678, 2012. doi: https://doi.org/10.1590/S0001-37652012005000038
SUNDARAM, T. et al. Advancements in biosurfactant production using agro-industrial waste for industrial and environmental applications. Front. Microbiol., v.15, n.e1357302, 2024. doi: https://doi.org/10.3389/fmicb.2024.1357302
THAKUR, P. et al. Rhamnolipid the glycolipid biosurfactant: Emerging trends and promising strategies in the field of biotechnology and biomedicine. Microb. Cell Fact., v.20, p.1-15, 2021. doi: https://doi.org/10.1186/s12934-020-01497-9
VALÉRIO FILHO, A.V. et al. Brazilian agroindustrial wastes as a potential resource of bioative compounds and their antimicrobial and antioxidant activities. Molecules, v.27, p.1-16, 2022. doi: https://doi.org/10.3390/molecules27206876
VEIGA JUNIOR, V.F.; PINTO, A.C.O gênero Copaifera L. Quim Nova, v.25, p.273-286, 2002. doi: https://doi.org/10.1590/S0100-40422002000200016
WANG, Z. et al. GC–MS-Based metabolome and metabolite regulation in serum-resistant Streptococcus agalactiae. J. Proteome Res., v.15, p.2246-2253, 2016. doi: https://doi.org/10.1021/acs.jproteome.6b00215
WEBSTER, D. et al. Antifungal activity of medicinal plant extracts; preliminary screening studies. J. Ethnopharmacol., v.115, p.140-146, 2008. doi: https://doi.org/10.1016/j.jep.2007.09.014
ZHAO, F. et al. Enhanced production of mono-rhamnolipid in Pseudomonas aeruginosa and application potential in agriculture and petroleum industry. Bioresour. Technol., v.323, n.e124605, 2021. doi: https://doi.org/10.1016/j.biortech.2020.124605
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Yara Gomes Da Conceição, Giulian César Da Silva Sá, Alan Moura Feio, Lucas Mariano De Siqueira Pimentel, Joane De Almeida Alves, Glenda Soares Gomes, Evelly Oliveira Ramos, Viviane De Oliveira Freitas Lione , Kattya Gyselle De Holanda e Silva , Ulisses De Pádua Pereira, Pamela Dias Rodrigues, Cristina Maria Quintella , Emilly Cruz Da Silva, Pedro De Sousa Quevedo, Sidnei Cerqueira Dos Santos

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.