Utilização de Nanopartículas de Prata na Inibição de Listeria spp.
DOI:
https://doi.org/10.17921/1415-6938.2025v29n1p161-168Resumo
Carnes in natura e produtos cárneos podem se tornar veículos para a disseminação de patógenos como Listeria spp. O uso de antimicrobianos durante o processamento de alimentos é uma estratégia eficaz para controlar o crescimento microbiano. Nesse contexto, a nanotecnologia, especialmente a aplicação de nanopartículas de prata (NPAg), destaca-se como uma alternativa promissora para a indústria alimentícia. O presente trabalho teve como objetivo a utilização de nanopartículas de prata no controle de Listeria spp. As estirpes estudas foram Listeria monocytogenes, Listeria innocua e Listeria ivanovii e as concentrações da solução de prata coloidal foram de 2, 3, 4, 5, 10 e 20 mg/L. A concentração inibitória mínima em microplacas e a medida da concentração bactericida mínima foram avaliadas para verificar a inibição por meio de presença ou ausência de crescimento. Na avaliação da atividade antimicrobiana, as três estirpes foram igualmente inibidas, demonstrando sensibilidade a partir da concentração de 10 mg/L de prata. Na determinação da concentração mínima bactericida, a L. monocytogenes demonstrou maior sensibilidade, com inibição a partir de 5 mg/L. As nanopartículas de prata apresentam ação antimicrobiana contra as estirpes de Listeria spp.
Palavras-chave: Patógeno. Segurança Alimentar. Antimicrobiano. Biotecnologia.
Downloads
Referências
ARAUJO, M.M.; LONGO, P.L. Teste da ação antibacteriana in vitro de óleo essencial comercial de Origanum vulgare (orégano) diante das cepas de Escherichia coli e Staphylococcus aureus, Pharmacology, v.83, p.1-7, 2016. doi: https://doi.org/10.1590/1808-1657000702014
ABAYA, S. et al. Pathogenicity, genotyping and antibacterial susceptibility of the Listeria spp. recovered from stray dogs. Microbial Pathogenesis, v.126, p.123-133, 2019. doi: https://doi.org/10.1016/j.micpath.2018.10.037
AHIMED, H.M. et al. Isolation and multidrug drug resistance profile of Listeria species in selected Dairy Farm’s Operational stages in Oromia Regional State, Ethiopia, Scientific African, v.16, p.1-9, 2022. doi: https://doi.org/10.1016/j.sciaf.2022.e01167
CLSI - Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically: approved standard. Pennsylvania, 2015.
CUFAOGLU, G.; AMBARCIOGLU, P.; AYAZ, N.D. Meta-analysis of the prevalence of Listeria spp. and antibiotic-resistant L. monocytogenes isolates from foods in Turkey. LWT, v.144, p.1-6, 2021. doi: https://doi.org/10.1016/j.lwt.2021.111210
DENG, J. et al. Biosafety risk assessment of nanoparticles: Evidence from food case studies. Environ. Pollution, v.275, p.1-13, 2021. doi: https://doi.org/10.1016/j.envpol.2021.116662
DUFFY, L.L. et al. Investigation into the antibacterial activity of silver, zinc oxide and copper oxide nanoparticles against poultry-relevant isolates of Salmonella and Campylobacter. Food Control., v.92, p.293-300, 2018. doi: https://doi.org/10.1016/j.foodcont.2018.05.008
FERREIRA, E.; CAVALCANTI, P.; NOGUEIRA, D. ExpDes: An R Package for ANOVA and Experimental Designs. Appl. Mathem., v.5, p.2952-2958, 2014. doi: 10.4236/am.2014.519280.
KHAN, A.A. et al. Pomegranate peel induced biogenic synthesis of silver nanoparticles and their multifaceted potential against intracellular pathogen and câncer. Saudi J. Biol. Sci., v.28, n.8 p.4191-4200, 2021. doi: https://doi.org/10.1016/j.sjbs.2021.06.022
KHURSHEE, S. et al. Biogenic silver nanoparticles: Synthesis, applications and challenges in food sector with special emphasis on aquaculture. Food Chem., p.1-11, 2023. doi: https://doi.org/10.1016/j.fochx.2023.101051
LIANOU, D.T. et al. O-038 Isolation of Listeria ivanovii from milk of ewes: Prevalence, association with milk quality, antibiotic susceptibility, predictors, whole genome sequence and phylogenetic relationships. Animal – Sci. Proc., v.14, p.82, 2023. doi: https://doi.org/10.1016/j.anscip.2023.01.114
MUTHULAKSHMI, L. et al. Antibiofilm efficacy of novel biogenic silver nanoparticles from Terminalia catappa against food-borne Listeria monocytogenes ATCC 15,313 and mechanisms investigation in-vivo and in-vitro. J. King Saud Univ. Sci., v.34, p.1-9, 2022. doi: https://doi.org/10.1016/j.jksus.2022.102083
RAHMAN, U. et al. Design of Nanoparticles for Future Beverage Industry. Nanoengineering in the Beverage Industry, v.20, p.105–136, 2020. doi: https://doi.org/10.1016/B978-0-12-816677-2.00004-1
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2021.
SILVA, N. et al. Manual de métodos de análise microbiológica de alimentos e água. São Paulo: Blucher, 2018.
SKANDAMIS, P.N. Listeria monocytogenes. Encyclopedia of Dairy Sciences, v.4, p.305-312, 2022.
SMITH, A.M. et al. Outbreak of Listeria monocytogenes in South Africa, 2017-2018: Laboratory Activities and Experiences Associated with Whole-Genome Sequencing Analysis of Isolates. Foodborne Pathogens and disease, v.16, p.524-530, 2019. doi: https://doi.org/10.1089/fpd.2018.2586
SOUZA, N. et al. Principais aspectos de Listeria monocytogenes e sua importância para a saúde pública. Ars Vet., v.37., n.4, p.264-272, 2021. doi: https://doi.org/10.15361/2175-0106.2021v37n4p264-272
TADIELO, L.E. et al. Preoperational cleaning processes interfere with microbial ecology and presence of Listeria monocytogenes and Salmonella spp. on food conveyor belts of a poultry slaughterhouse in Brazil. LWT, p.1-10, 2023. doi: https://doi.org/10.1016/j.lwt.2023.115037
THAKUR, M.; ASRANI, R.K.; PATIAL, V. Listeria monocytogenes: a food-borne pathogen. Foodborne Dis., p.157-192, 2018.
TONDO, E.C.; BARTZ, S. Microbiologia e Sistemas de Gestão da Segurança de Alimentos, v.2, p.19-383, 2019.
VALENTE, W. A., Efeito antimicrobiano de nanopartículas de prata em estirpes de Salmonella spp. da cadeia produtiva de frango de corte. 2021. 66f. Dissertação (Ciência e Tecnologia de Alimentos). Instituto Federal de Educação, Ciência e Tecnologia do Sudeste de Minas Gerais, Rio Pomba, 2021.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2025 Tássia Estevão Oliveira Furtado, Wellingta Cristina Almeida Do Nascimento Benevenuto, Augusto Aloísio Benevenuto Júnior, Maurílio Lopes Martins, André Narvaes Da Rocha Campos, Aurélia Dornelas De Oliveira Martins, Mariana Silva Coelho

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.