Use of Silver Nanoparticles in the Inhibition of Listeria spp.

Authors

  • Tássia Estevão Oliveira Furtado Instituto Federal de Educação, Ciência e Tecnologia do Sudeste de Minas Gerais, Campus Rio Pomba. MG, Brasil. https://orcid.org/0009-0009-2277-4713
  • Wellingta Cristina Almeida Do Nascimento Benevenuto Instituto Federal de Educação, Ciência e Tecnologia do Sudeste de Minas Gerais, Campus Rio Pomba, MG, Brasil. https://orcid.org/0000-0002-9761-0942
  • Augusto Aloísio Benevenuto Júnior Instituto Federal de Educação, Ciência e Tecnologia do Sudeste de Minas Gerais, Campus Rio Pomba. MG, Brasil. https://orcid.org/0000-0002-4276-7141
  • Maurílio Lopes Martins Instituto Federal de Educação, Ciência e Tecnologia do Sudeste de Minas Gerais, Campus Rio Pomba. MG, Brasil. https://orcid.org/0000-0001-8494-0873
  • André Narvaes Da Rocha Campos Instituto Federal de Educação, Ciência e Tecnologia do Sudeste de Minas Gerais, Campus Rio Pomba. MG, Brasil. https://orcid.org/0000-0003-3379-871X
  • Aurélia Dornelas De Oliveira Martins Instituto Federal de Educação, Ciência e Tecnologia do Sudeste de Minas Gerais, Campus Rio Pomba. MG, Brasil. https://orcid.org/0000-0002-0664-7492
  • Mariana Silva Coelho Universidade Federal de Lavras. MG, Brasil. https://orcid.org/0009-0000-8591-8766

DOI:

https://doi.org/10.17921/1415-6938.2025v29n1p161-168

Abstract

Fresh meat and meat products can become vehicles for the spread of pathogens such as Listeria spp. The use of antimicrobials during food processing is an effective strategy to control microbial growth. In this context, nanotechnology, especially the application of silver nanoparticles (NPAg), stands out as a promising alternative for the food industry. The present work aimed to use silver nanoparticles in the control of Listeria spp. The strains studied were Listeria monocytogenes, Listeria innocua and Listeria ivanovii and the concentrations of the colloidal silver solution were 2, 3, 4, 5, 10 and 20 mg/L. The minimum inhibitory concentration in microplates and the measurement of the minimum bactericidal concentration were evaluated to verify the inhibition through the presence or absence of growth. In the evaluation of antimicrobial activity, the three strains were equally inhibited, demonstrating sensitivity from a concentration of 10 mg/L of silver. In determining the minimum bactericidal concentration, L. monocytogenes demonstrated greater sensitivity, with inhibition from 5 mg/L. Silver nanoparticles present antimicrobial action against Listeria spp.

Keywords: Pathogen. Food Security. Antimicrobial. Biotechnology.

Resumo

Carnes in natura e produtos cárneos podem se tornar veículos para a disseminação de patógenos como Listeria spp. O uso de antimicrobianos durante o processamento de alimentos é uma estratégia eficaz para controlar o crescimento microbiano. Nesse contexto, a nanotecnologia, especialmente a aplicação de nanopartículas de prata (NPAg), destaca-se como uma alternativa promissora para a indústria alimentícia. O presente trabalho teve como objetivo a utilização de nanopartículas de prata no controle de Listeria spp. As estirpes estudas foram Listeria monocytogenes, Listeria innocua e Listeria ivanovii e as concentrações da solução de prata coloidal foram de 2, 3, 4, 5, 10 e 20 mg/L. A concentração inibitória mínima em microplacas e a medida da concentração bactericida mínima foram avaliadas para verificar a inibição por meio de presença ou ausência de crescimento. Na avaliação da atividade antimicrobiana, as três estirpes foram igualmente inibidas, demonstrando sensibilidade a partir da concentração de 10 mg/L de prata. Na determinação da concentração mínima bactericida, a L. monocytogenes demonstrou maior sensibilidade, com inibição a partir de 5 mg/L. As nanopartículas de prata apresentam ação antimicrobiana contra as estirpes de Listeria spp.

Palavras-chave: Patógeno. Segurança Alimentar. Antimicrobiano. Biotecnologia.

Downloads

Download data is not yet available.

References

ARAUJO, M.M.; LONGO, P.L. Teste da ação antibacteriana in vitro de óleo essencial comercial de Origanum vulgare (orégano) diante das cepas de Escherichia coli e Staphylococcus aureus, Pharmacology, v.83, p.1-7, 2016. doi: https://doi.org/10.1590/1808-1657000702014

ABAYA, S. et al. Pathogenicity, genotyping and antibacterial susceptibility of the Listeria spp. recovered from stray dogs. Microbial Pathogenesis, v.126, p.123-133, 2019. doi: https://doi.org/10.1016/j.micpath.2018.10.037

AHIMED, H.M. et al. Isolation and multidrug drug resistance profile of Listeria species in selected Dairy Farm’s Operational stages in Oromia Regional State, Ethiopia, Scientific African, v.16, p.1-9, 2022. doi: https://doi.org/10.1016/j.sciaf.2022.e01167

CLSI - Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically: approved standard. Pennsylvania, 2015.

CUFAOGLU, G.; AMBARCIOGLU, P.; AYAZ, N.D. Meta-analysis of the prevalence of Listeria spp. and antibiotic-resistant L. monocytogenes isolates from foods in Turkey. LWT, v.144, p.1-6, 2021. doi: https://doi.org/10.1016/j.lwt.2021.111210

DENG, J. et al. Biosafety risk assessment of nanoparticles: Evidence from food case studies. Environ. Pollution, v.275, p.1-13, 2021. doi: https://doi.org/10.1016/j.envpol.2021.116662

DUFFY, L.L. et al. Investigation into the antibacterial activity of silver, zinc oxide and copper oxide nanoparticles against poultry-relevant isolates of Salmonella and Campylobacter. Food Control., v.92, p.293-300, 2018. doi: https://doi.org/10.1016/j.foodcont.2018.05.008

FERREIRA, E.; CAVALCANTI, P.; NOGUEIRA, D. ExpDes: An R Package for ANOVA and Experimental Designs. Appl. Mathem., v.5, p.2952-2958, 2014. doi: 10.4236/am.2014.519280.

KHAN, A.A. et al. Pomegranate peel induced biogenic synthesis of silver nanoparticles and their multifaceted potential against intracellular pathogen and câncer. Saudi J. Biol. Sci., v.28, n.8 p.4191-4200, 2021. doi: https://doi.org/10.1016/j.sjbs.2021.06.022

KHURSHEE, S. et al. Biogenic silver nanoparticles: Synthesis, applications and challenges in food sector with special emphasis on aquaculture. Food Chem., p.1-11, 2023. doi: https://doi.org/10.1016/j.fochx.2023.101051

LIANOU, D.T. et al. O-038 Isolation of Listeria ivanovii from milk of ewes: Prevalence, association with milk quality, antibiotic susceptibility, predictors, whole genome sequence and phylogenetic relationships. Animal – Sci. Proc., v.14, p.82, 2023. doi: https://doi.org/10.1016/j.anscip.2023.01.114

MUTHULAKSHMI, L. et al. Antibiofilm efficacy of novel biogenic silver nanoparticles from Terminalia catappa against food-borne Listeria monocytogenes ATCC 15,313 and mechanisms investigation in-vivo and in-vitro. J. King Saud Univ. Sci., v.34, p.1-9, 2022. doi: https://doi.org/10.1016/j.jksus.2022.102083

RAHMAN, U. et al. Design of Nanoparticles for Future Beverage Industry. Nanoengineering in the Beverage Industry, v.20, p.105–136, 2020. doi: https://doi.org/10.1016/B978-0-12-816677-2.00004-1

R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2021.

SILVA, N. et al. Manual de métodos de análise microbiológica de alimentos e água. São Paulo: Blucher, 2018.

SKANDAMIS, P.N. Listeria monocytogenes. Encyclopedia of Dairy Sciences, v.4, p.305-312, 2022.

SMITH, A.M. et al. Outbreak of Listeria monocytogenes in South Africa, 2017-2018: Laboratory Activities and Experiences Associated with Whole-Genome Sequencing Analysis of Isolates. Foodborne Pathogens and disease, v.16, p.524-530, 2019. doi: https://doi.org/10.1089/fpd.2018.2586

SOUZA, N. et al. Principais aspectos de Listeria monocytogenes e sua importância para a saúde pública. Ars Vet., v.37., n.4, p.264-272, 2021. doi: https://doi.org/10.15361/2175-0106.2021v37n4p264-272

TADIELO, L.E. et al. Preoperational cleaning processes interfere with microbial ecology and presence of Listeria monocytogenes and Salmonella spp. on food conveyor belts of a poultry slaughterhouse in Brazil. LWT, p.1-10, 2023. doi: https://doi.org/10.1016/j.lwt.2023.115037

THAKUR, M.; ASRANI, R.K.; PATIAL, V. Listeria monocytogenes: a food-borne pathogen. Foodborne Dis., p.157-192, 2018.

TONDO, E.C.; BARTZ, S. Microbiologia e Sistemas de Gestão da Segurança de Alimentos, v.2, p.19-383, 2019.

VALENTE, W. A., Efeito antimicrobiano de nanopartículas de prata em estirpes de Salmonella spp. da cadeia produtiva de frango de corte. 2021. 66f. Dissertação (Ciência e Tecnologia de Alimentos). Instituto Federal de Educação, Ciência e Tecnologia do Sudeste de Minas Gerais, Rio Pomba, 2021.

Downloads

Published

2025-03-03

How to Cite

ESTEVÃO OLIVEIRA FURTADO, Tássia; ALMEIDA DO NASCIMENTO BENEVENUTO, Wellingta Cristina; BENEVENUTO JÚNIOR, Augusto Aloísio; LOPES MARTINS, Maurílio; NARVAES DA ROCHA CAMPOS, André; DORNELAS DE OLIVEIRA MARTINS, Aurélia; SILVA COELHO, Mariana. Use of Silver Nanoparticles in the Inhibition of Listeria spp. Ensaios e Ciência: Ciências Biológicas, Agrárias e da Saúde, [S. l.], v. 29, n. 1, p. 161–168, 2025. DOI: 10.17921/1415-6938.2025v29n1p161-168. Disponível em: https://ensaioseciencia.pgsscogna.com.br/ensaioeciencia/article/view/13610. Acesso em: 22 apr. 2025.

Issue

Section

Articles