Effect of Hydrocapacity Bacteria Inoculation on Soybean Development Under Water Deficit

Authors

  • Romildo Rêgo Sacramento Júnior Instituto Federal Goiano, Campus Ceres. GO, Brazil. https://orcid.org/0009-0004-8420-8614
  • Igor Araújo Universidade do Estado de Mato Grosso, Campus Nova Xavantina, Programa de Pós-Graduação em Ecologia e Conservação. MT, Brazil. https://orcid.org/0000-0002-9226-7321
  • Jessica Maria Israel De Jesus Universidade de São Paulo. SP, Brazil. https://orcid.org/0000-0002-8261-9936
  • Aleksander Samuel Fidelis Pereira Instituto Federal Goiano, Campus Ceres. GO, Brazil.
  • Mônica Lau Da Silva Marques Instituto Federal Goiano, Campus Ceres. GO Goiás, Brazil. https://orcid.org/0000-0002-2794-0815

DOI:

https://doi.org/10.17921/1415-6938.2025v29n2p505-517

Abstract

Soybean (Glycine max L.) is a legume of a great economic importance for Brazil, the world's leading producer and exporter of this crop. In the 2022/2023 season, production reached a record 322.8 million tons. However, due to the El Niño climatic phenomenon, the forecast for the 2023/2024 season indicates a decrease to 306.4 million t, representing a 5.08% reduction. This decline is attributed to delayed and reduced rainfall, highlighting water scarcity as a growing challenge for farmers, particularly in regions prone to climatic extremes. In this context, low-cost strategies such as the use of plant growth-promoting and hydrocapacity microorganisms have been investigated as promising alternatives to mitigate the effects of water deficit. Here, we evaluated the impact of hydrocapacity bacterial inoculation on the vegetative growth of soybeans under water stress conditions. The experiment consisted of four treatments: irrigated inoculated seeds, irrigated non-inoculated seeds, non-irrigated inoculated seeds, and non-irrigated non-inoculated seeds, arranged in a randomized block design with six replicates. We assessed root length, number of nodes, number of leaves, number of flowers/pods, and plant height. The use of a commercial product containing Bacillus aryabhathai, Bacillus circulans, and Bacillus haynesii resulted in significant improvements in the vegetative development of the cultivar CZ37B31I2X, promoting greater root length, number of nodes, flowers/pods, plant height, and dry mass. These results indicate the potential of hydrocapacity microorganisms to enhance soybean resilience under water deficit conditions. 

Keywords: Glycine max L. Water Deficit. Plant Growth. Agricultural Production. Bacillus spp.

 

Resumo

A soja (Glycine max L.) é uma leguminosa de grande importância econômica para o Brasil, maior produtor e exportador mundial dessa cultura. Na safra 2022/2023, a produção atingiu um recorde de 322,8 milhões de toneladas. No entanto, devido ao fenômeno climático El Niño, a previsão para a safra 2023/2024 indica uma redução para 306,4 milhões de toneladas, representando uma diminuição de 5,08%. Esse declínio é atribuído ao atraso e à redução das chuvas, destacando a escassez hídrica como um desafio crescente para os agricultores, especialmente em regiões suscetíveis a extremos climáticos. Nesse contexto, estratégias de baixo custo, como o uso de microrganismos promotores de crescimento e hidrocapacitadores, têm sido investigadas como alternativas promissoras para mitigar os efeitos do déficit hídrico. Neste estudo, avaliamos o impacto da inoculação de bactérias hidrocapacitadoras no desenvolvimento vegetativo da soja sob condições de estresse hídrico. O experimento foi composto por quatro tratamentos: sementes inoculadas irrigadas, sementes não inoculadas irrigadas, sementes inoculadas não irrigadas e sementes não inoculadas não irrigadas, dispostos em delineamento em blocos casualizados com seis repetições. Avaliamos o comprimento radicular, o número de nós, o número de folhas, o número de flores/vagens e a altura das plantas. O uso de um produto comercial contendo Bacillus aryabhathai, Bacillus circulans e Bacillus haynesii resultou em melhorias significativas no desenvolvimento vegetativo da cultivar CZ37B31I2X, promovendo maior comprimento radicular, número de nós, flores/vagens, altura das plantas e massa seca. Esses resultados indicam o potencial dos microrganismos hidrocapacitadores para aumentar a resiliência da soja em condições de déficit hídrico.

Palavras-chave: Glycine max L. Déficit hídrico. Crescimento Vegetal. Produção Agrícola. Bacillus spp.

Downloads

Download data is not yet available.

References

ARGENTEL-MARTÍNEZ, L. et al. Biotechnological advances in plant growth-promoting rhizobacteria for sustainable agriculture. World J. Microbiol. Biotechnol., v.41, n.1, p.21, 2025. doi: https://doi.org/10.1007/s11274-024-04231-4.

AZIZOGLU, U. et al. Natural products produced by the species of Bacillus cereus group: recent updates. J. Basic Microbiol., e2400666, 2024. doi: https://doi.org/10.1002/jobm.202400666.

CHAGAS JUNIOR, A.F. et al. Bacillus subtilis as a vegetable growth promoter inoculant in soybean. Diversitas J., v.7, 2022. doi: https://doi.org/10.48017/dj.v7i1.2071.

CONAB - Companhia Nacional de Abastecimento. Com nova redução, estimativa para safra de grãos 2023/24 é de 306,4 milhões de toneladas. Disponível em: https://www.conab.gov.br/ultimas-noticias/5354-com-nova-reducao-estimativa-para-safra-de-graos-2023-24-e-de-306-4-milhoes-de-toneladas.

CUNHA, G.R. Meteorologia: fatos & mitos. Brasília: EMBRAPA, 2000.

KALAM, S.; BASU, A.; PODILE, A.R. Functional and molecular characterization of plant growth promoting Bacillus isolates from tomato rhizosphere. Heliyon, v.6, n.8, e04734, 2020. doi: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7452486/.

KARIMI, B. et al. Biogeography of soil bacterial networks along a gradient of cropping intensity. Sci. Rep., v.9, p.3812, 2019. doi: https://doi.org/10.1038/s41598-019-40422-y.

KASPAR, T.C.; BROWN, H.J.; KASSMEYER, E.M. Corn root distribution as affected by tillage, wheel traffic, and fertilizer placement. Soil Tillage Res., v.79, n.2, p.167-174, 2004.

KIM, M. et al. Plant growth promoting effect of Bacillus amyloliquefaciens H-2-5 on crop plants and influence on physiological changes in soybean under soil salinity. Physiol. Mol. Biol. Plants, v.3, p.571-580, 2017. doi: https://doi.org/10.1007/s12298-017-0449-4.

KIM, S.H. et al. Genome-wide association studies of seven root traits in soybean (Glycine max L.) landraces. Int. J. Mol. Sci., v.24, n.1, p.873, 2023. doi: https://doi.org/10.3390/ijms24010873.

KUMAR, A. et al. Role of plant growth promoting Bacillus spp. in crop nutrition and protection: a review. Mol. Biol. Reports, v.47, p.6295-6308, 2020. doi: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7409232/.

KUMAR, M. et al. Synergistic effect of Pseudomonas putida and Bacillus amyloliquefaciens ameliorates drought stress in chickpea (Cicer arietinum L.). Plant Signaling and Behavior, v.11, e1071004, 2016. doi: https://doi.org/10.1080/15592324.2015.1071004.

KUMAR, M. et al. Plant growth promoting rhizobacterial mitigation of drought stress in crop plants: implications for sustainable agriculture. Agronomy, v.9, n.11, p.712, 2019. doi: https://www.mdpi.com/2073-4395/9/11/712.

LAM, H.M. et al. Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat. Genetics, v.42, n.12, p.1053-1059, 2018.

LEE, S.; KA, J. O.; SONG, H. G. Growth promotion of Xanthium italicum by application of rhizobacterial isolates of Bacillus aryabhattai in microcosm soil. J. Microbiol., v.50, p.45-49, 2012. doi: https://doi.org/10.1007/s12275-012-1415-z.

LIU, Y. et al. Bacillus pumilus LZP02 promotes rice root growth by regulating auxin biosynthesis and signaling pathways. Front. Microbiol., v.13, 2022. doi: https://www.frontiersin.org/articles/10.3389/fmicb.2022.1069053/full.

LYNCH, J.P. Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Ann. Bot., v.112, n.2, p.347-357, 2013.

OLIVEIRA, S.L. et al. Effect of Bacillus aryabhattai application on initial bean growth under different field capacities. Rev. COMEIA, v.2, p.10-19, 2020.

PARK, Y. et al. Bacillus aryabhattai SRB02 tolerates oxidative and nitrosative stress and promotes the growth of soybean by modulating the production of phytohormones. Plos One, v.12, e0173203, 2017. doi: https://doi.org/10.1371/journal.pone.0173203.

PASSOS, E.G.C. et al. Use of inoculants in tomatoes to evaluate the reduction of nitrogen and potassium fertilizers. Rev. Latino-Am. Amb. Saúde, v. 5, p.294-300, 2023.

RODRIGUES, S. Bacillus spp. como promotores e no controle de Sclerotium cepivorum in vitro. Curitibanos: Universidade Federal de Santa Catarina, 2019.

SOLANHA, M. et al. Co-inoculation of wheat with Azospirillum brasilense, Pseudomonas fluorescens, Bacillus spp. as a more sustainable alternative in agriculture. Rev. LatinoAm. Amb. Saúde, v.5, p.261-267, 2023.

VASQUES, N.C.; NOGUEIRA, M.A.; HUNGRIA, M. Increasing application of multifunctional Bacillus for biocontrol of pests and diseases and plant growth promotion: lessons from Brazil. Agronomy, v.14, n.8, p.1654, 2024. doi: https://www.mdpi.com/2073-4395/14/8/1654.

TAIZ, L. et al. Fisiologia e desenvolvimento vegetal. Porto Alegre: Artmed, 2017.

WANG, T.L. et al. Can we improve the nutritional quality of legume seeds. Plant Physiol., v.131, p.886-891, 2003. doi: https://doi.org/10.1104/pp.102.017665.

Downloads

Published

2025-07-02

How to Cite

RÊGO SACRAMENTO JÚNIOR, Romildo; ARAÚJO, Igor; ISRAEL DE JESUS, Jessica Maria; FIDELIS PEREIRA, Aleksander Samuel; LAU DA SILVA MARQUES, Mônica. Effect of Hydrocapacity Bacteria Inoculation on Soybean Development Under Water Deficit. Ensaios e Ciência: Ciências Biológicas, Agrárias e da Saúde, [S. l.], v. 29, n. 2, p. 505–517, 2025. DOI: 10.17921/1415-6938.2025v29n2p505-517. Disponível em: https://ensaioseciencia.pgsscogna.com.br/ensaioeciencia/article/view/13777. Acesso em: 4 jul. 2025.

Issue

Section

Articles