Fatores de Estresse e Desempenho Fermentativo de Leveduras Industriais

Autores

  • Vanessa Correia Mota Tobias Universidade Estadual de Mato Grosso do Sul, Programa de Pós-Graduação em Recursos Naturais. https://orcid.org/0009-0004-8682-1658
  • Maria Do Socorro Mascarenhas Universidade Estadual de Mato Grosso do Sul, Programa de Pós-Graduação em Recursos Naturais. MS, Brasil.turais- PGRN https://orcid.org/0000-0002-5343-4502
  • Margareth Batistote Universidade Estadual de Mato Grosso do Sul, Programa de Pós-Graduação em Recursos Naturais. MS, Brasil. https://orcid.org/0000-0001-9865-2362

DOI:

https://doi.org/10.17921/1415-6938.2025v29n1p202-211

Resumo

Saccharomyces cerevisiae são fundamentais na produção de etanol, graças à sua eficiência fermentativa. Entretanto, no processo fermentativo, as condições de estresse podem alterar as rotas bioquímicas destes microrganismos influenciando na produção de metabólitos. Neste sentido, este estudo visou investigar os fatores de estresse presentes no processo fermentativo etanólico, bem como analisar a influência da temperatura no acúmulo de glicogênio em linhagens industriais de Saccharomyces cerevisiae. Um pré-inóculo com 0,10 g das leveduras Catanduva-1 e Pedra-2 no meio líquido YPSac 5% foi preparado e a biomassa obtida foi inoculada em caldo de cana a 15 ⁰Brix e então, incubadas em diferentes condições de cultivo. O glicogênio foi extraído com Na2CO3 0,25 M e determinado por método enzimático e leituras em 525 nm. Os resultados evidenciaram que, durante o processo de fermentação de etanol, as leveduras enfrentaram vários fatores de estresse que podem prejudicar sua performance fermentativa. A análise do acúmulo de glicogênio revelou que houve diferenças no perfil entre as linhagens, a Pedra-2 apresentou acúmulo significativo a 30 e 35 °C após 10 h de fermentação.

Palavras-chave: Processos Fermentativos. Metabolismo Celular. Glicogênio.

Downloads

Não há dados estatísticos.

Referências

AZHAR, S.H.M. et al. Yeasts in sustainable bioethanol production: a review. Biochem. Biophysics Rep, v.10, p.52-61, 2017. doi: https://doi.org/10.1016/j.bbrep.2017.03.003

BATISTOTE, M.; SANTOS, M.S.M. Analysis of fermentative parameters and the importance of Saccharomyces cerevisiae in the development of goods and services. Res. Soc. Develop., v.9, n.11, p.e93691110586-e93691110586, 2020.

BERLOWSKA, J.; KREGIEL, D.; AMBROZIAK, W. Physiological tests for yeast brewery cells immobilized on modified chamotte carrier. Antonie van Leeuwenhoek, v.104, p.703-714, 2013. doi: https://doi.org/10.1007/s10482-013-9978-1

BETLEJ, G. et al. Long-term adaption to high osmotic stress as a tool for improving enological characteristics in industrial wine yeast. Genes, v.11, n.5, p.576, 2020. doi: https://doi.org/10.3390/genes11050576

BONATELLI, M.L. et al. Characterization of the contaminant bacterial communities in sugarcane first-generation industrial ethanol production. FEMS microbiology letters, v. 364, n. 17, p. fnx159, 2017. doi: https://doi.org/10.1093/femsle/fnx159

BREXÓ, R.P.; SANT’ANA, A.S. Impact and significance of microbial contamination during fermentation for bioethanol production. Renewable Sustainable Energ. Rev., v.73, p.423-434, 2017. doi: https://doi.org/ 10.1016/j.rser.2017.01.151

CABALLERO-SANCHEZ, L. et al. Pilot-scale bioethanol production from the starch of avocado seeds using a combination of dilute acid-based hydrolysis and alcoholic fermentation by Saccharomyces cerevisiae. Microb. Cell Fact., v.22, n.1, p.119, 2023. doi: https://doi.org/10.1186/s12934-023-02110-5

COERTJENS, N.C. et al. Evaluation of stress factors in the metabolism of Pedra-2 yeast. Sci. Electr. Arch., v.16, n.3, 2023. doi: https://doi.org/10.36560/16320231670

CRAY, J.A. et al. Chaotropicity: a key factor in product tolerance of biofuel-producing microorganisms. Current Opinion ibiotechnol., v.33, p.228-259, 2015. doi: https://doi.org/10.1016/j.copbio.2015.02.010

MORAES, D.C. et al. Digoxin derivatives sensitize a Saccharomyces cerevisiae mutant strain to fluconazole by inhibiting Pdr5p. J. Fungi, v.8, n.8, p.769, 2022. doi: https://doi.org/10.3390/jof8080769

EARDLEY, J.; TIMSON, D.J. Yeast cellular stress: impacts on bioethanol production. Fermentation, v.6, n.4, p.109, 2020. doi: https://doi.org/ 10.3390/fermentation6040109

ELBAKUSH, A.E.; GÜVEN, D. Evaluation of ethanol tolerance in relation to intracellular storage compounds of Saccharomyces cerevisiae using FT-IR spectroscopy. Proc. Biochem., v.101, p.266-273, 2021. doi: https://doi.org/10.1016/j.procbio.2020.11.028

GRELLET, M.A.C. et al. Genotypic and phenotypic characterization of industrial autochthonous Saccharomyces cerevisiae for the selection of well-adapted bioethanol-producing strains. Fungal Biol., v.126, n.10, p.658-673, 2022. doi: https://doi.org/10.1016/j.funbio.2022.08.004

JHARIYA, U. et al. Understanding ethanol tolerance mechanism in Saccharomyces cerevisiae to enhance the bioethanol production: current and future prospects. BioEnergy Res., v.14, p.670-688, 2021. doi: https://doi.org/10.1007/s12155-020-10228-2

LEE, S.S.; ROBINSON, F.M.; WANG, H.Y. Rapid determination of yeast viability. In: Biotechnol. Bioeng. Symp.;(United States). Univ. of Michigan, Ann Arbor, 1981.

LIN, N.X.; XU, Y.; YU, Xi.W. Overview of yeast environmental stress response pathways and the development of tolerant yeasts. Syst. Microbiol. Biomanuf., p.1-14, 2022. doi: https://doi.org/ 10.1007/s43393-021-00058-4

MALAVASI, M. et al. A new two-phase passive temperature control system for a wine fermenter. Food Bioprod. Proc., v.139, p.11-23, 2023. doi: https://doi.org/10.1016/j.fbp.2023.02.003

MENEZES, L.H.Q.; DE CASTRO, R.B.R.; ROCHA, E.M.F. Identificação de leveduras selvagens de um fermento de levedo industrial durante a produção de bioetanol–um biocombustível renovável. Braz. J. Develop., v.7, n.12, p.122102-122109, 2021.

MOON, J.E. et al. Trehalose protects the probiotic yeast Saccharomyces boulardii against oxidative stress-induced cell death. J. Microbiol. Biotechnol., v.30, n.1, p.54, 2020. doi: https://doi.org/10.4014/jmb.1906.06041

MUELLER, L.P. et al. The effects of thermal and ethanolic stress in industrial strains of Saccharomyces cerevisiae. Res. Soc. Develop., v.9, n.10, p.e6819109091-e6819109091, 2020. doi: https://doi.org/ 10.33448/rsd-v9i10.9091

NEVES, M.J. et al. Quantification of trehalose in biological samples with a conidial trehalase from the thermophilic fungus Humicola grisea var. thermoidea. World J. Microbiol. Biotechnol., v.10, p.17-19, 1994. doi: https://doi.org/10.1007/BF00357555

PARROU, J.L.; TESTE, M.A.; FRANÇOIS, J. Effects of various types of stress on the metabolism of reserve carbohydrates in Saccharomyces cerevisiae: genetic evidence for a stress-induced recycling of glycogen and trehalose. Microbiology, v.143, n.6, p.1891-1900, 1997. doi: https://doi.org/ 10.1099/00221287-143-6-1891

QIU, X. et al. Stress tolerance phenotype of industrial yeast: industrial cases, cellular changes, and improvement strategies. Appl. Microbiol. Biotechnol., v.103, p.6449-6462, 2019. doi: https://doi.org/ 10.1007/s00253-019-09993-8

SAINI, P. et al. Response and tolerance of yeast to changing environmental stress during ethanol fermentation. Proc. Biochem., v.72, p.1-12, 2018. doi: https://doi.org/10.1016/j.procbio.2018.07.001

SALDAÑA, C. et al. Rapid and reversible cell volume changes in response to osmotic stress in yeast. Braz. J. Microbiol., v.52, p.895-903, 2021. doi: https://doi.org/10.1007/s42770-021-00427-0

DA SILVA SANTOS, A.F. et al. Perfil de produção de etanol e trealose em Saccharomyces cerevisiae cultivadas em mosto a base de caldo de cana. Sci. Plena, v.14, n.7, 2018. doi: https://doi.org/10.14808/sci.plena.2018.076201

SANTOS, M.S.M. et al. Evaluation of Thermal Stress in Saccharomyces cerevisiae concerning ethanol production and assimilation of amino acids in saccharine substrate. Orbital, p.280-285, 2021.

SANTOS, M.S.M. et al. The action of light on Saccharomyces cerevisiae metabolism under different culture conditions. Holos, v.8, 2022. doi: https://doi.org/10.15628/holos.2022.10750

SILVA, R.F. et al. Proteínas de choque térmico e perfil proteico em Saccharomyces cerevisiae. Observatório Econ. Latinoam., v.21, n.9, p.13403-13420, 2023. doi: https://doi.org/10.55905/oelv21n9-158

WANG, L. et al. Engineering prokaryotic regulator IrrE to enhance stress tolerance in budding yeast. Biotechnol. Biofuels, v.13, p.1-18, 2020. doi: https://doi.org/10.1186/s13068-020-01833-6

YANG, J.; TAVAZOIE, S. Regulatory and evolutionary adaptation of yeast to acute lethal ethanol stress. PLoS One, v.15, n.11, p.e0239528, 2020. doi:https://doi.org/ 10.1371/journal.pone.0239528

YAP, C.F.et al. Model parameterization with quantitative proteomics: Case study with trehalose metabolism in Saccharomyces cerevisiae. Processes, v.9, n.1, p.139, 2021. doi: https://doi.org/10.3390/pr9010139

ZENG, L. et al. Metabolome analysis of the response and tolerance mechanisms of Saccharomyces cerevisiae to formic acid stress. Int. J. Biochem. Cell Biol., v.148, p.106236, 2022. doi: https://doi.org/10.1016/j.biocel.2022.106236

ZHENG, H. et al. Highly efficient rDNA‐mediated multicopy integration based on the dynamic balance of rDNA in Saccharomyces cerevisiae. Microb. Biotechnol., v.15, n.5, p.1511-1524, 2022. doi: https://doi.org/10.1111/1751-7915.14010

Downloads

Publicado

2025-03-03

Como Citar

CORREIA MOTA TOBIAS, Vanessa; DO SOCORRO MASCARENHAS , Maria; BATISTOTE, Margareth. Fatores de Estresse e Desempenho Fermentativo de Leveduras Industriais. Ensaios e Ciência: Ciências Biológicas, Agrárias e da Saúde, [S. l.], v. 29, n. 1, p. 202–211, 2025. DOI: 10.17921/1415-6938.2025v29n1p202-211. Disponível em: https://ensaioseciencia.pgsscogna.com.br/ensaioeciencia/article/view/13675. Acesso em: 22 abr. 2025.

Edição

Seção

Artigos