Antimicrobial Activity and Synergism Between Coix lacryma-jobi Extract and Three Antibiotics Against Pseudomonas aeruginosa
DOI:
https://doi.org/10.17921/1415-6938.2025v29n3p670-680Abstract
There is a wide variety of plants with active ingredients with antimicrobial activity. Coix lacryma-jobi, one of the species whose compounds have already been identified, is popularly known as Job's tear and has been used to treat various diseases, such as rheumatic diseases, neuralgia and female endocrine disorders, as it has anti-inflammatory, antitumor, antiallergic, and antimicrobial properties. The objective of this study was to evaluate the synergism of polar extract of Coix lacryma-jobi and antibiotics (ciprofloxacin, chloramphenicol and gentamicin) against the bacterium Pseudomonas aeruginosa. The material was collected in a vacant lot, it was dried in a forced air oven and ground in a blender and subjected to extraction in organic solvent ethyl acetate, over 28 days occasional agitations were made, then the bottle was reserved at room temperature for solvent evaporation. The extract was tested along with specific antibiotics for P. aeruginosa. It was concluded that the extract of the leaves of C. lacryma-jobi has an inhibitory effect against the strain of Pseudomonas aeruginosa tested. There was synergism between the leaf extract and gentamicin increasing its antimicrobial activity. It was also observed that the strain showed high tolerance to chloramphenicol, and that it inhibited the effect of C. lacryma-jobi extract. Further tests, especially in vivo, are suggested to evaluate the efficacy or otherwise of using the antibiotic gentamicin together with C. lacryma-jobi extract, and to better understand the antagonistic effect demonstrated to chloramphenicol.
Keywords: P. aeruginosa. Coix lacryma-jobi. Medicinal Plants.
Downloads
References
ACHARYA, S. et al. Job's tears (Coix lacryma-jobi): a medicinal plant of India. Med. Poaceae India, v.1, p.20, 2024. doi: https://doi.org/10.5281/zenodo.10811091
ÁLVAREZ-MARTÍNEZ, F.J. et al. Antibacterial plant compounds, extracts and essential oils: An updated review on their effects and putative mechanisms of action. Phytomedicine, v.90, p. 153626, 2021. doi: https://doi.org/10.1016/j.phymed.2021.153626
ANDRIOLE, V. The Quinolones. New York: Academic Press, 1999.
BAGGIO, C.L. et al. Cocleotoxicidade da gentamicina por doses habituais para neonatos-estudo funcional. Braz. J. Otorhinol., v.76, n.1, p.91-95, 2010.
BALBI, H.J. Chloramphenicol: a review. Pediatrics Rev., v.25, n.8, p.284-288, 2004.
BRASIL. Ministério da Saúde. A fitoterapia no SUS e o programa de pesquisas de plantas medicinais da central de medicamentos. Secretaria de ciência, tecnologia e insumos estratégicos departamento de assistência farmacêutica e insumos estratégicos. Brasília: MS, 2006.
BREIDENSTEIN, E.B.M.; DE LA FUENTE-NÚÑEZ, C.; HANCOCK, R.E.W. Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol., v.19, n.8, p.419-426, 2011. doi: https://doi.org/10.1016/j.tim.2011.04.005
CALDEIRA, N.M. et al. Estudos de interações medicamentosas entre antimicrobianos e fitoterápicos utilizados em práticas integrativas e complementares em saúde. Cad. Ciênc. Saúde, v.5, n.2, p.116, 2015.
CHHABRA, D.; GUPTA, R.K. Formulation and phytochemical evaluation of nutritional product containing Job's tears (Coix lachryma-Jobi L.). J. Pharmacog. Phytochem., v.4, n.3, p.291, 2015.
CHUNG, C.P. et al. Antiproliferative lactams and spiroenone from adlay bran in human breast cancer cell lines. J. Agricul. Food Chem., v.59, n. 4, p.1185-1194, 2011.
DE FARIÑA, L.O.; POLETTO, G. Interações entre antibióticos e nutrientes: uma revisão com enfoque na atenção à saúde. Visão Acad., v.11, n.1, 2010.
DEL FIOL, F.S.; AVALLONE, A.M. Uso de cloranfenicol na gestação. Rev. Eletr. Farm., v.2, n.1, p.31-37, 2005.
DOS SANTOS, E.P. et al. Punica Granatum L. (Romã) e atividade antimicrobiana contra o biofilme dental: uma revisão bibliográfica. Ensaios Ciênc., v.23, n.2, p.88-93, 2019. doi: https://doi.org/10.17921/1415-6938.2019v23n2p88-93
DUTRA, L.L.B. et al. Controle de infecção nosocomial uma visão profissional avaliando as bactérias mais frequentes. Rev Transdisc. Univ. Saúde, v.2, n.2, 2023.
WHO. The state of food security and nutrition in the world 2021. Transforming food systems for food security, improved nutrition and affordable healthy diets for all. Rome: FAO, 2021.
FU, J. et al. Synthesis, structure and structure–activity relationship analysis of caffeic acid amides as potential antimicrobials. Euro. J. Med. Chem., v.45, n.6, p.2638-2643, 2010.
GERMONI, L.A.P.; BREMER, P.J.; LAMONT, I.L. The effect of alginate lyase on the gentamicin resistance of Pseudomonas aeruginosa in mucoid biofilms. J. Appl. Microbiol., v.121, n.1, p.126-135, 2016.
GOMES C.C.; ALMEIDA D.J. Atividade antimicrobiana de extratos de Coix lacryma-jobi em acetato de etila sobre Staphylococcus aureus e Pseudomonas aeruginosa. Luminária, v.22, n.2, p.18-25, 2020.
HIDRON, A.I. et al. Antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006–2007. Infect. Control Hosp. Epidemiol., v.29, n.11, p.996-1011, 2008.
HOOPER, D.C. et al. Mechanisms of action of and resistance to ciprofloxacin. Am. J. Med., v.82, n.4A, p.12-20, 1987.
JARDETZKY, O. Studies on the mechanism of action of chloramphenicol: I. the conformation of chloramphenicol in solution. J. Biol. Chem., v.238, n.7, p.2498-2508, 1963.
KARUNARATHNA, I. et al. Clinical applications of gentamicin in treating gram-negative infections. 2024. doi: https://doi.org/10.1007/s40262-022-01143-0
KHATKAR, A. et al. Synthesis, antimicrobial evaluation and QSAR studies of p-coumaric acid derivatives. Ara. J. Chem., v.10, p.S3804-S3815, 2017. doi: https://doi.org/10.1055/s-0033-1349866.
LIBARDI, S. H. Atividade antioxidante da vanilina e do ácido vanílico e o efeito da complexação por proteínas do soro do leite na desativação de radicais e ferrilmioglobina em condições simulando o trato gastrointestinal. São Paulo: USP, 2010.
LORUSSO, A.B. et al. Role of efflux pumps on antimicrobial resistance in Pseudomonas aeruginosa. Int. J. Mol. Sci., v.23, n.24, p.15779, 2022. doi: https://doi.org/10.3390/ijms232415779
LOU, Z. et al. Antibacterial activity and mechanism of action of chlorogenic acid. J. Food Sci., v.76, n.6, p.398-403, 2011. doi: https://doi.org/10.1111/j.1750-3841.2011.02213.x
MILLANAO, A.R. et al. Biological effects of quinolones: a family of broad-spectrum antimicrobial agents. Molecules, v.26, n.23, p.7153, 2021. doi: https://doi.org/10.3390/molecules26237153
MUTHUSWAMY, S.; RUPASINGHE, H.P.V. Fruit phenolics as natural antimicrobial agents: Selective antimicrobial activity of catechin, chlorogenic acid and phloridzin. J. Food Agricul. Environ., v.5, n.3/4, p. 81, 2007.
OLIVEIRA, R.A.G et al. Estudo da interferência de óleos essenciais sobre a atividade de alguns antibióticos usados na clínica. Rev Bras Farmacog, v. 16, n. 1, p. 77-82, 2006.
QADRI, H. et al. Natural products and their semi-synthetic derivatives against antimicrobial-resistant human pathogenic bacteria and fungi. Saudi J. Biol. Sci., v.29, n.9, p.103376, 2022. doi: https://doi.org/10.1016/j.sjbs.2022.103376
SEIJA, V.; VIGNOLI, R. Principales grupos de antibióticos. Temas Bacteriol. Virol. Méd., v.631, p.647, 2006.
SHARIATI, A. et al. The resistance mechanisms of bacteria against ciprofloxacin and new approaches for enhancing the efficacy of this antibiotic. Front. Public Health, v.10, p.1025633, 2022.
SHOULIANG, C.; PHILLIPS, S.M. Coix. In: WU, C.Y.; RAVEN, P.H.; HONG, D.Y. Flora China, v.22, p.648-649, 2006.
SINGHAL, M. et al. Chloramphenicol and tetracycline (broad spectrum antibiotics). In: Antibiotics-Therapeutic Spectrum and Limitations. Academic Press, 2023. p. 155-165.
SONI, J.K. et al. Coix: an underutilized functional food crop of Mizoram. Gen. Res. Crop Evol., p.1-17, 2023. doi: https://doi.org/10.1007/s10722-023-01587-8
YU, F. et al. Effects of adlay seed oil on blood lipids and antioxidant capacity in hyperlipidemic rats. J. Sci. Food Agric., v.91, p.1843-1848, 2011.
ZHAO, M. et al. Identification of cyclodextrin inclusion complex of chlorogenic acid and its antimicrobial activity. Food Chem., v.120, n.4, p.1138-1142, 2010.
ZHENG, C.J. et al. Fatty acid synthesis is a target for antibacterial activity of unsaturated fatty acids. FEBS Lett., v.579, n.23, p.5157-5162, 2005.
ZULOAGA, F.O. et al. Catalogue of New World grasses (Poaceae): III Subfamilies Panicoideae, Aristidoideae, Arundinoideae and Danthonioideae. Washington: Department of Systematic Biology - Botany, National Museum of Natural History, Smithsonian Institution, 2003.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Durinézio José De Almeida; Bruna Sidor, Ghenifher Fornarri, Moana Rodrigues França

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.