Morphological and Molecular Identification of Yeasts Isolated from Brazilian Savannah Fruits Submitted to Concomitant Stress in Sugarcane Juice
Abstract
In a biotechnological system, the precise species identification is paramount for an efficient process. In industrial conditions, fermentation is conducted without aseptic, and consequently, the process is subject to constant contamination by bacteria and yeast strains, including wild species of Saccharomyces cerevisiae. The characterization and identification of yeast species have been based on morphology and physiological characteristics. However, these laborious techniques often leave room for doubt. Currently, molecular biology techniques allow the rapid identification of yeast species involved in the fermentation process efficiently and economically. The bioprospection of yeast more resistant to stress conditions may reveal strains with good potential for use. However, correct isolate molecular and morphological characterization is required. The present study aimed to characterize five yeasts isolated from Brazilian savannah fruit extracts on a morphological and molecular level. Morphological analysis of the yeasts L32, L34, L36, L38, and B32 considered factors such as colony size, color, surface, and edges. This characterization was complemented with molecular identification performed using the PCR and PCR/RFLP. The results show predominantly smooth and shiny colonies. Analysis of the amplification of ribosomal DNA fragments, after digestion with the enzymes Hae III and Hinf I, resulted in bands corresponding to the profile of S. cerevisiae. With these results, it was possible to conclude that the method of yeast isolation by pressure of simultaneous stresses allows the selection of the S. cerevisiae yeasts.
Keywords: Selective Isolation. PCR. PCR/RFLP. Ribosomal DNA. Colonies.
Downloads
References
AMOIKON, T.L.S. et al. Diversity and enzymatic profiles of indigenous yeasts isolated from three types of palm wines produced in Côte d’Ivoire. J. Appl. Microbiol., v.126, n.2, p.567-579, 2019. doi: https://doi.org/10.1111/jam.14154
ANDORRA, I. et al. Analysis and direct quantification of Saccharomyces cerevisiae and Hanseniaspora guilliermondii populations during alcoholic fermentation by fluorescence in situ hybridization, flow cytometry and quantitative PCR. Food Microbiol., v.28, n.8, p.1483-1491, 2011. doi: https://doi.org/10.1016/j.fm.2011.08.009
BALEIRAS COUTO, M.M. et al. RAPD analysis: a rapid technique for differentiation of spoilage yeasts. Int. J. Food Microbiol., v.24, n.1/2, p.249-260, 1994. doi: https://doi.org/10.1016/0168-1605(94)90123-6
BARNETT, J.A.; PAYNE, R.W.; YARROW, D. Yeasts: characteristics and identification. Cambridge: Cambridge University Press (CUP), 1990.
BASÍLIO, A.C.M. Detection and Identification of wild yeast contaminants of the industrial fuel ethanol fermentation process. Curr. Microbiol., v.56, n.4, p.322-326, 2008. doi: https://doi.org/10.1007/s00284-007-9085-5
BLANCO, A.; DUQUE-BOTERO, F.; ALVARADO-ORTEGA, J. Lower Turonian Fossil Lagestätten in Mexico: their relationship to OAE-2. In: GEOLOGICAL SOCIETY OF AMERICA, ABSTRACTS WITH PROGRAMS, 38., 2006. Abstracts with Programs, 2006. v.38, p.148, 2006.
BLANCO-PIÑÓN, A. et al. Evidencias petrográficas de estructuras de origen algal/bacteriano en carbonatos de la Formación Agua Nueva (Cenomaniano/Turoniano: Cretácico Superior) en Xilitla, S.L.P. México central. Bol. Soc. Geol. Mex., v.66, n.2, p.397-412, 2014.
BOCKELMANN, W.; HELLER, M.; HELLER, K.J. Identification of yeasts of dairy origin by amplified ribosomal DNA restriction analysis (ARDRA). Int. Dairy J., v.18, n.10/11, p.1066-1071, 2008. doi: https://doi.org/10.1016/j.idairyj.2008.05.008
CECCATO-ANTONINI, S.R. Microbiologia da fermentação alcoólica: a importância do monitoramento microbiológico em destilarias. São Carlos: EdUFSCar, 2010.
COMBINA, M. et al. Yeast identification in grape juice concentrates from Argentina: yeasts in grape juice concentrates. Lett. Appl. Microbiol., v.46, n.2, p.192-197, 2007. doi: https://doi.org/10.1111/j.1472-765X.2007.02291.x
ESTEVE-ZARZOSO, B. et al. Identification of yeasts by RFLP analysis of the 5.8S rRNA gene and the two ribosomal internal transcribed spacers. Int. J. Syst. Evolut. Microbiol., v.49, n.1, p.329-337, 1999. doi: https://doi.org/10.1099/00207713-49-1-329
GONZÁLEZ-ALONSO, I. et al. Capturing yeast associated with grapes and spontaneous fermentations of the Negro Saurí minority variety from an experimental vineyard near León. Sci. Rep., v.11, n.1, p.3748, 2021. doi: https://doi.org/10.1038/s41598-021-83123-1
GRANCHI, L. et al. Rapid detection and quantification of yeast species during spontaneous wine fermentation by PCR-RFLP analysis of the rDNA ITS region. J. Appl. Microbiol., v.87, n.6, p.949-956, 1999. doi: https://doi.org/10.1046/j.1365-2672.1999.00600.x
GUILLAMON, J.M. et al. Rapid Characterization of Four Species of the Saccharomyces Sensu Stricto Complex According to Mitochondrial DNA Patterns. Int. J. Syst. Bacteriol., v.44, n.4, p.708-714, 1994. doi: https://doi.org/10.1099/00207713-44-4-708.
GUILLAMÓN, J.M.; BARRIO, E.; QUEROL, A. Characterization of wine yeast strains of the Saccharomyces Genus on the basis of molecular markers: relationships between genetic distance and geographic or ecological origin. Syst. Appl. Microbiol., v.19, n.1, p.122-132, 1996. doi: https://doi.org/10.1016/S0723-2020(96)80019-1
HIERRO, N. et al. Monitoring of Saccharomyces and Hanseniaspora populations during alcoholic fermentation by real-time quantitative PCR. FEMS Yeast Res., v.7, n.8, p.1340-1349, 2007. doi: https://doi.org/10.1111/j.1567-1364.2007.00304.x
KUKHTEVICH, I.V. et al. Cell size sets the diameter of the budding yeast contractile ring. Nat. Comm., v.11, n.1, p.2952, 2020. doi: https://doi.org/10.1038/s41467-020-16764-x
KUTHAN, M. et al. Domestication of wild Saccharomyces cerevisiae is accompanied by changes in gene expression and colony morphology. Mol. Microbiol., v.47, n.3, p.745–754, 2003. doi: https://doi.org/10.1046/j.1365-2958.2003.03332.x
LI, M. et al. Sugar metabolism and accumulation in the fruit of transgenic apple trees with decreased sorbitol synthesis. Horticul. Res., v.5, n.1, p.60, 2018. doi: https://doi.org/10.1038/s41438-018-0064-8
LÓPEZ, V. et al. A simplified procedure to analyse mitochondrial DNA from industrial yeasts. Int. J.Food Microbiol., v.68, n.1/2, p.75-81, 2001. doi: https://doi.org/10.1016/S0168-1605(01)00483-4
LÓPEZ-ARBOLEDA, W.A. et al. Diversidad de levaduras asociadas a chichas tradicionales de Colombia. Rev. Colomb. Biotecnol., v.12, n.2, p.176-186, 2010.
MARÇAL, V.V.M. Isolamento e caracterização morfogenética de levedura com fenótipo killer e seu potencial no antagonismo de fitopatógenos. Londrina: UEL, 2005.
MARTORELL, P.; QUEROL, A.; FERNÁNDEZ-ESPINAR, M.T. Rapid Identification and Enumeration of Saccharomyces cerevisiae Cells in Wine by Real-Time PCR. Appl. Environ. Microbiol., v.71, n.11, p.6823-6830, 2005. doi: https://doi.org/10.1128/AEM.71.11.6823-6830
MCCULLOUGH, M.J. et al. Species Identification and virulence attributes of Saccharomyces boulardii (nom. inval.). J. Clin. Microbiol., v.36, n.9, p.2613-2617, 1998. doi: https://doi.org/10.1128/JCM.36.9.2613-2617
PARAPOULI, M. et al. Saccharomyces cerevisiae and its industrial applications. AIMS Microbiol., v.6, n.1, p.1-32, 2020. doi: https://doi.org/10.3934/microbiol.2020001
PRADEEP, FS. et al. Influence of culture media on growth and pigment production by Fusarium moniliforme KUMBF1201 isolated from paddy field soil. World Appl. Sci. J., v.22, n.1, p.70-77, 2013. doi: https://doi.org/10.5829/idosi.wasj.2013.22.01.7265.
QUEROL, A.; BARRIO, E.; RAMÓN, D. A Comparative study of different methods of yeast strain characterization. Syst. Appl. Microbiol., v.15, n.3, p.439–446, 1992. doi: https://doi.org/10.1016/S0723-2020(11)80219-5
QUEROL, A.; BARRIO, E.; RAMÓN, D. Population dynamics of natural Saccharomyces strains during wine fermentation. Int. J. Food Microbiol., v.21, n.4, p.315-323, 1994. doi: https://doi.org/10.1016/0168-1605(94)90061-2
REDZEPOVIC, S. et al. Identification and characterization of Saccharomyces cerevisiae and Saccharomyces paradoxus strains isolated from Croatian vineyards. Lett. Appl. Microbiol., v.35, n.4, p.305-310, 2002. doi: https://doi.org/10.1046/j.1472-765X.2002.01181.x
SCHWARTZ, D.C.; CANTOR, C.R. Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell, v.37, n.1, p.67-75, 1984. doi: https://doi.org/10.1016/0092-8674(84)90301-5
SUN, S.; GRESHAM, D. Cellular quiescence in budding yeast. Yeast, v.38, n.1, p.12-29, 2021. doi: https://doi.org/10.1002/yea.3545.
TAMURA, K. et al. Molecular Evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol., v.28, n.10, p.2731-2739, 2011. doi: https://doi.org/10.1093/molbev/msr121.
TRISTEZZA, M. et al. Molecular and Technological characterization of saccharomyces cerevisiae strains isolated from natural fermentation of susumaniello grape must in apulia, southern Italy. Int. J. Microbiol., v.2014, p.1-11, 2014. doi: https://doi.org/10.1155/2014/897428.
VAUDANO, E.; GARCIA-MORUNO, E. Discrimination of Saccharomyces cerevisiae wine strains using microsatellite multiplex PCR and band pattern analysis. Food Microbiol., v.25, n.1, p.56-64, 2008. doi: https://doi.org/10.1016/j.fm.2007.08.001.
VEZINHET, F.; BLONDIN, B.; HALLET, J.-N. Chromosomal DNA patterns and mitochondrial DNA polymorphism as tools for identification of enological strains of Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol., v.32, n.5, 1990. doi: https://doi.org/10.1007/BF00173729
VOIDAROU, C. et al. Fermentative foods: microbiology, biochemistry, potential human health benefits and public health issues. Foods, v.10, n.1, p.69, 2021. doi: https://doi.org/10.3390/foods10010069.
WALCZAK, E. et al. RAPD with microsatellite as a tool for differentiation of Candida genus yeasts isolated in brewing. Food Microbiol., v.24, n.3, p.305-312, 2007. doi: https://doi.org/10.1016/j.fm.2006.04.012
WHITE, T.J. et al. Amplification and direct sequencing of fungal ribosomal rna genes for phylogenetics. In: INNIS, M.A. et al. PCR Protocols. San Diego: Academic Press, 1990. p.315-322. doi: https://doi.org/10.1016/B978-0-12-372180-8.50042-1
ZAKHARTSEV, M.; REUSS, M. Cell size and morphological properties of yeast Saccharomyces cerevisiae in relation to growth temperature. FEMS Yeast Res., v.18, n.6, 2018. doi: https://doi.org/10.1093/femsyr/foy052
ZAMAN, S. et al. How Saccharomyces responds to nutrients. Ann. Rev. Gen., v.42, p.27-81, 2008. doi: https://doi.org/10.1146/annurev.genet.41.110306.130206.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Regilene Fátima De Oliveira, Bruno Fines, Valéria Cristina Ferreira Da Silva, Marney Pascoli Cereda, Antonia Railda Roel, Carina Elisei De Oliveira

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.