Os Efeitos do Jejum Intermitente nos Parâmetros Bioquímicos de Ratos Wistar
DOI:
https://doi.org/10.17921/1415-6938.2019v23n3p238-243Resumo
O presente estudo teve como objetivo avaliar as repercussões bioquímicas em ratos Wistar submetidos ao jejum intermitente por 15, 30 e 60 dias, modelo de dieta intercalada por períodos de restrição total de alimentação com períodos de alimentação ad libitum. O estudo foi realizado com 40 ratos Wistar, machos divididos em três grupos, todos recebendo a ração Nuvital®. Os ratos submetidos ao jejum intermitente tiveram esse tipo de dieta durante 3 dias na semana e nos demais dias tiveram acesso livre a ração e água. Os animais foram pesados semanalmente e, após o período de jejum intermitente, foram eutanasiados para a coleta de sangue e análise bioquímica (glicemia, triglicérides, colesterol total e frações). Houve redução significativa do peso e triglicerídeos nos animais do grupo de jejum em relação ao grupo controle durante 15 dias. Em relação ao grupo de 30 dias de jejum, houve redução significativa de colesterol total e HDL. Nos animais submetidos à dieta durante 60 dias, houve diminuição significativa de colesterol total e HDL, no entanto, o consumo de água aumentou consideravelmente. Conclui-se que o jejum intermitente durante 15 dias causou alterações bioquímicas favoráveis ao metabolismo desses animais.
Palavras-chave: Jejum Intermitente. Restrição Calórica. Prevenção.
Abstract
This experiment was conducted to evaluate the biochemical effects in healthy Wistar rats submitted by 15, 30 and 60 days to intermittent fasting, a model of interspersed diet between periods of total food restriction withfood ad libitum period. The study was performed with 40 male Wistar rats randomly divided into 3 groups, all receiving Nuvital®. The rats submitted to intermittent fasting had this type of diet during 3 days a week and on the other days had free access to food. They received water ad libitum every day. The analysis related to metabolic changes resulting from fasting were performed by means of serum biochemical analysis (blood glucose, triglycerides, total cholesterol and HDL) at the end of the experiment. There was a significant reduction of weight and triglycerides from the fasting group in relation to the control group in 15 days, there was no significant increase in parameters during this period of diet. Concerning the 30-day fasting group, there was a significant reduction of total cholesterol and HDL. Therefore, Intermittent Fasting in 15 days only demonstrated biochemical benefits.
Keywords: Intermittent Fasting. Caloric restriction. Prevention.
Referências
AZEVEDO, F.R.; IKEOKA, D.; CARAMELLI, B. Effects of intermittent fasting on metabolism in men. Rev. Assoc. Med. Bras., v.59, n.2, p.167-173, 2013. doi:10.1016/j.ramb.2012.09.003
BAHAMMAM, A.S.; PANDI-PERUMAL, S.R.; ALZOGHAIBI, M. A. The effect of Ramadan intermittent fasting on lipid peroxidation in healthy young men while controlling for diet and sleep: a pilot study. Ann. Thor. Med., v.11, n.1, p.43-48, 2016. doi: 10.4103/1817-1737.172296
BRASIL. Resolução normativa nº13 de 20 de setembro de 2013. Baixa as Diretrizes da Prática de Eutanásia do Conselho Nacional de Controle de Experimentação Animal – Concea. Ministério da Ciência, Tecnologia e Inovação. Brasília: Concea, 2013.
CERQUEIRA, F.M. et al. Long-term intermittent feeding, but not caloric restriction, leads to redox imbalance, insulin receptor nitration, and glucose intolerance. Free Rad. Biol. Med., v.51, n.7, p.1454-1460, 2011. doi: 10.1016/j.freeradbiomed.2011.07.006
CHAUSSE, B. et al. Intermittent fasting induces hypothalamic modifications resulting in low feeding efficiency, low body mass and overeating. Endocrinol., v.155, n.7, p.2456-2466, 2014. doi: 10.1210/en.2013-2057
GABEL, K. et al. Effects of 8-hour time restricted feeding on body weight and metabolic disease risk factors in obese adults: a pilot study. Nutr. Healthy Aging, v.4, n.4, p.345-353, 2018. doi: 10.3233/NHA-170036
GOTTHARDT, J.D. et al. Intermittent fasting promotes fat loss with lean mass retention, increased hypothalamic norepinephrine content, and increased neuropeptide y gene expression in diet-induced obese male mice. Endocrinology, v.157, n.2, p.679-691, 2016. doi: 10.1210/en.2015-1622
HALBERG, N. et al. Effect of intermittent fasting and refeeding on insulin action in healthy men. J. Appl. Physiol., v.99, n.6, p.2128-2136, 2005. doi: 10.1152/japplphysiol.00683.2005
HARVIE, M.; HOWELL, A. Potential benefits and harms of intermittent energy restriction and intermittent fasting amongst obese, overweight and normal weight subjects - a narrative review of human and animal evidence. J. Behavioral Scie., v.7, n.1, p. 4, 2017. doi: 10.3390/bs7010004
HEILBRONN, L.K. et al. Alternate-day fasting in nonobese subjects: effects on body weight, body composition, and energy metabolism. Am. J. Clin. Nutr., v.81, n.1, p.69-73, 2005. doi: 10.1093/ajcn/81.1.69
IBRAHIM, W.H. et al. Effect of ramadan fasting on markers of oxidative stress and serum biochemical markers of cellular damage in healthy subjects. Ann. Nutr. Metabol., v.53, n.3/4, p.175-181, 2008. doi: 10.1159/000172979
KLEMPEL, M.C. et al. Dietary and physical activity adaptations to alternate day modified fasting: implications for optimal weight loss. Nutr. J., v.9, p.35, 2010. doi: 10.1186/1475-2891-9-35.
KLOP, B.; CABEZAS, J.W.F.E.; CASTRO, M. Dyslipidemia in obesity: mechanisms and potential targets. Nutrients, v.5, n.4, p.1218-1240, 2013. doi: 10.3390/nu5041218
MASSONE, F. Atlas de anestesiologia veterinária. São Paulo: Roca, 2003.
MORAES, R.C.M. Impactos de uma estratégia de jejum intermitente associada a treinamento de endurance na composição corporal e desempenho físico de ratos Wistar. Uberaba: Universidade do Triângulo Mineiro, 2016.
NERY, C.S. et al. Medidas murinométricas e eficiência alimentar em ratos provenientes de ninhadas reduzidas na lactação e submetidos ou não ao exercício de natação. Rev. Bras. Med. Esporte, v.17, n.1, p.49-55, 2011. doi: 10.1590/S1517-86922011000100010
RONA, A. Metabolic effects of intermittent fasting. Department of Nutritional Sciences Faculty of Health and Medical Sciences. Universidade de Surrey, 2017.
SAKAMOTO, K.; GRUNEWALD, K.K. Beneficial effects of exercise on growth of rats during intermittent fasting. J. Nutr., v.117, n.2, p.390-395, 1987. doi: 10.1093/jn/117.2.390
SANTOS, H.O.; MACEDO, R.C.O. Impact of intermittent fasting on the lipid profile: assessment associated with diet and weight loss. Clin. Nutr. Euro. Soc. Clin. Nutr. Metabol., v.24, p.14-21, 2018. doi: 10.1016/j.clnesp.2018.01.002.
SOETERS, M.R. et al. Intermittent fasting does not affect whole-body glucose, lipid, or protein metabolism. Am. J. Clin. Nutr., v.90, n.5, p.1244-1251, 2009. doi:10.3945/ajcn.2008.27327
TREPANOWSKI, J.F. et al. Effect of alternate-day fasting on weight loss, weight maintenance, and cardioprotection among metabolically healthy obese adults: a randomized clinical trial. JAMA, v.177, n.7, p. 930-938, 2017. doi: 10.1001/jamainternmed.2017.0936
VARADY, K.A. et al. Effects of weight loss via high fat vs. low fat alternate day fasting diets on free fatty acid profiles. Scie. Reports, v.5, p.7561, 2015. doi: 10.1038/srep07561
YANG, W. et al. Alternate-day fasting protects the livers of mice against high-fat diet–induced inflammation associated with the suppression of Toll-like receptor 4/nuclear fator κB signaling. Nutr. Res., v.36, n.6, p.586-593, 2016. doi: 10.1016/j.nutres.2016.02.001
ZIAEE, V. et al. The changes of metabolic profile and weight during Ramadan fasting. Singapore Med. J., v.47, n.5, p.409-414, 2006.