Thermal Field in the Cargo Compartment of a Single Box Trucks During the Transport of Day-Old Chicks: a Kriging Interpolation Analysis
Abstract
One-day-old chicks require strict thermal control during transportation to ensure their well-being and survival. This study aims to evaluate the internal environmental conditions inside the cargo compartment of a box truck during the transport of 62,000 chicks over a 520 km journey lasting 11 hours. Temperature data were collected using sensors and analyzed using the Kriging method to generate thermal distribution maps from the cargo compartment of the box truck. Although the air conditioning system of the box truck was designed to maintain an ambient temperature within the range of 24 °C to 26 °C, the results have shown a higher prevalence of elevated temperatures in the front section of the compartment, with peaks of 27 °C, thus, revealing significant temperature deviations from the recommended range, indicating inadequate environmental control. These findings emphasize the need for improved thermal regulation systems during road transportation to ensure the chicks’ well-being and health, contributing to greater productivity efficiency in the poultry industry.
Keywords: Bird Transportation. Hygrothermal Conditions. Poultry Farming. Thermal Stress.
Downloads
References
AL-ABDULLATIF, A.; AZZAM, M. M. Effects of hot arid environments on the production performance, carcass traits, and fatty acids composition of breast meat in broiler chickens. Life, Basel, v. 13, n. 6, p. 1239, 2023. DOI: https://doi.org/10.3390/life13061239.
ANDREASSON, F.; NORD, A.; NILSSON, J.-Å. Experimentally increased nest temperature affects body temperature, growth, and apparent survival in blue tit nestlings. Journal of Avian Biology, v. 49, n. 2, e01620, 2018. DOI: https://doi.org/10.1111/jav.01620
BATISTA, P. V. G. et al. Hybrid kriging methods for interpolating sparse river bathymetry point data [Métodos híbridos de krigagem para interpolação de levantamentos batimétricos fluviais]. Ciência e Agrotecnologia, v. 41, n. 4, p. 402–412, 2017. DOI: https://doi.org/10.1590/1413-70542017414008617
BILAL, R. M. et al. Thermal stress and high stocking densities in poultry farms: Potential effects and mitigation strategies. Journal of Thermal Biology, v. 99, 102944, 2021. DOI: https://doi.org/10.1016/j.jtherbio.2021.102944
CLÍMACO, W. L. S. et al. Effects of embryo thermal manipulation on thermotolerance of broiler chicks between 28–40 days of rearing. Revista Brasileira de Zootecnia, v. 53, e20230167, 2024. DOI: https://doi.org/10.37496/rbz5320230167
DAYAN, J. et al. Incubation temperature affects yolk utilization through changes in expression of yolk sac tissue functional genes. Poultry Science, v. 99, n. 11, p. 6128–6138, 2020. DOI: https://doi.org/10.1016/j.psj.2020.07.037
DE JONG, I. C. et al. Effects of on-farm and traditional hatching on welfare, health, and performance of broiler chickens. Poultry Science, v. 99, n. 10, p. 4662–4671, 2020. DOI: https://doi.org/10.1016/j.psj.2020.06.052
HU, C. et al. CFD investigation on combined ventilation system for multilayer-caged-laying hen houses. Animals, v. 14, n. 17, 2623, 2024. DOI: https://doi.org/10.3390/ani14172623
JACOBS, L. et al. Effect of post-hatch transportation duration and parental age on broiler chicken quality, welfare, and productivity. Poultry Science, v. 95, n. 9, p. 1973–1979, 2016. DOI: https://doi.org/10.3382/ps/pew155
KRISHNAN, G. et al. Thermoregulation in birds. In: Textbook of Veterinary Physiology. p. 751–764. Springer, 2023. DOI: https://doi.org/10.1007/978-981-19-9410-4_29
AL-ABDULLATIF, A.; AZZAM, M.M. Effects of hot arid environments on the production performance, carcass traits, and fatty acids composition of breast meat in broiler chickens. Life, Basel, v.13, n.6, p.1239, 2023. doi: https://doi.org/10.3390/life13061239.
ANDREASSON, F.; NORD, A.; NILSSON, J.-Å. Experimentally increased nest temperature affects body temperature, growth, and apparent survival in blue tit nestlings. J. Avian Biol., v.49, n.2, 2018. doi: https://doi.org/10.1111/jav.01620
BATISTA, P.V.G. et al. Hybrid kriging methods for interpolating sparse river bathymetry point data [Métodos híbridos de krigagem para interpolação de levantamentos batimétricos fluviais]. Ciênc. Agrotecnol., v.41, n.4, p.402-412, 2017. doi: https://doi.org/10.1590/1413-70542017414008617
BILAL, R.M. et al. Thermal stress and high stocking densities in poultry farms: Potential effects and mitigation strategies. J. Ther. Biol., v.99, 102944, 2021. doi: https://doi.org/10.1016/j.jtherbio.2021.102944
CLÍMACO, W.L.S. et al. Effects of embryo thermal manipulation on thermotolerance of broiler chicks between 28–40 days of rearing. Rev Bras. Zoot., v.53, e20230167, 2024. doi: https://doi.org/10.37496/rbz5320230167
DAYAN, J. et al. Incubation temperature affects yolk utilization through changes in expression of yolk sac tissue functional genes. Poul. Sci., v.99, n.11, p.6128–6138, 2020. doi: https://doi.org/10.1016/j.psj.2020.07.037
DE JONG, I.C. et al. Effects of on-farm and traditional hatching on welfare, health, and performance of broiler chickens. Poul. Sci., v.99, n.10, p.4662-4671, 2020. doi: https://doi.org/10.1016/j.psj.2020.06.052
HU, C. et al. CFD investigation on combined ventilation system for multilayer-caged-laying hen houses. Animals, v.14, n.17, 2623, 2024. doi: https://doi.org/10.3390/ani14172623
JACOBS, L. et al. Effect of post-hatch transportation duration and parental age on broiler chicken quality, welfare, and productivity. Poultry Sci., v.95, n.9, p.1973-1979, 2016. doi: https://doi.org/10.3382/ps/pew155
KRISHNAN, G. et al. Thermoregulation in birds. Textbook of Veterinary Physiolog. 2023. doi: https://doi.org/10.1007/978-981-19-9410-4_29
LANDIM, P.M.B. Sobre geoestatística e mapas. Terra e Didática, v.2, n.1, p.19-33, 2006. doi: https://doi.org/10.20396/td.v2i1.8637463
MADKOUR, M. et al. Mitigating the detrimental effects of heat stress in poultry through thermal conditioning and nutritional manipulation. J. Therm. Biol., v.103, p.103169, 2022. doi: https://doi.org/10.1016/j.jtherbio.2021.103169
LOYAU, T. et al. Cyclic variations in incubation conditions induce adaptive responses to later heat exposure in chickens: a review. Animal, v.9, n.1, p.76–85, 2014. doi: https://doi.org/10.1017/S1751731114001931
LORENCENA, M. C. et al. A framework for modelling, control and supervision of poultry farming. Int. J. Prod. Res., v.58, n.10, p.3164-3179, 2020. doi: https://doi.org/10.1080/00207543.2019.1630768
MAMAN, A.H. et al. Effect of chick body temperature during post-hatch handling on broiler live performance. Poultry Science, v. 98, n. 1, p. 244–250, 2019. DOI: https://doi.org/10.3382/ps/pey395
LUNNY, E. et al. Incubation temperature and PCB-126 exposure interactively impair shorebird embryo and post-hatch development. Environ. Res., v.188, 2020. doi: https://doi.org/10.1016/j.envres.2020.109779
MANGAN, M.; SIWEK, M. Strategies to combat heat stress in poultry production: a review. J. Anim. Physiol. Anim. Nutr., v.108, n.3, p.576-595, 2024. doi: https://doi.org/10.1111/jpn.13916
MARTINEZ, A.A.G. et al. Applying paraconsistent annotated logic Eτ for optimizing broiler housing conditions. AgriEng., v.6, n.2, p.1252-1265, 2024. doi: https://doi.org/10.3390/agriengineering6020071
McKECHNIE, A. E. et al. Avian thermoregulation in the heat: Efficient evaporative cooling allows for extreme heat tolerance in four southern hemisphere columbids. J. Exper. Biol., v.219, n.14, p.2145-2155, 2016. doi: https://doi.org/10.1242/jeb.138776
MOONCHAI, S.; CHUTSAGULPROM, N. Semiparametric semivariogram modeling with a scaling criterion for node spacing: a case study of solar radiation distribution in Thailand. Mathematics, v.8, n.12, p.1-16, 2020. doi: https://doi.org/10.3390/math8122173
MOREIRA, L.M. et al. Effects of cold stress on physiologic metabolism in the initial phase and performance of broiler rearing. J. Thermal Biol., v.119, p.103773, 2024. doi: https://doi.org/10.1016/j.jtherbio.2023.103773
MUJAHID, A. Acute cold-induced thermogenesis in neonatal chicks (Gallus gallus). Comparative Biochem. Physiol., v.156, n.1, p.34–41, 2010. doi: https://doi.org/10.1016/j.cbpa.2009.12.004
NAZARENO, A.C. et al. Temperature mapping of trucks transporting fertile eggs and day-old chicks: Efficiency and/or acclimatization? Rev Bras. Eng. Agríc. Amb., v.19, n.2, p.113-118, 2015. doi: https://doi.org/10.1590/1807-1929/agriambi.v19n2p134-139
NAZARENO, A.C. et al. Real-time web-based microclimate monitoring of broiler chicken trucks on different shifts. Rev Bras. Eng. Agríc. Amb., v.24, n.8, p.554–559, 2020. doi: https://doi.org/10.1590/1807-1929/agriambi.v24n8p554-559
NOVAIS, J.W.Z. et al. Condições térmicas e dependência espacial da temperatura de diferentes superfícies pelo método da krigagem em Cuiabá-MT, Brasil. Ensaios Ciênc., v.20, n.3, 2016. doi: https://doi.org/10.17921/1415-6938.2016v20n3p133-138
OLIVEIRA, K.P. et al. Productive performance of broilers at the final stage of breeding submitted to different levels of metabolizable energy in different thermal environments. Agron. Res., v.16, n.2, p.556-563, 2018. doi: https://doi.org/10.15159/AR.18.069
PANDA, A.K.; BHANJA, S.K.; SHYAM SUNDER, G. Early post-hatch nutrition on immune system development and function in broiler chickens. World's Poultry Sci. J., v.71, n.2, p.285-296, 2015. doi: https://doi.org/10.1017/S004393391500029X
PRICE, E.R.; DZIALOWSKI, E.M. Development of endothermy in birds: Patterns and mechanisms. J. Compar. Physiol., v.188, n.3, p.373–391, 2018. doi: https://doi.org/10.1007/s00360-017-1135-0
RAMADIANI et al. Temperature and humidity control system for broiler chicken coops. Ind. J. Electr. Eng. Comp. Sci., v.22, n.3, p.1327-1333, 2021. doi: https://doi.org/10.11591/ijeecs.v22.i3.pp1327-1333
RIBEIRO, B.P.V.B.; YANAGI JUNIOR, T. Current thermal environment technology in the broiler production. Arch. Zootec., v.71, n.274, p.114-119, 2022. doi: https://doi.org/10.21071/az.v71i274.5657
SHAKERI, M. et al. Dietary betaine reduces the negative effects of cyclic heat exposure on growth performance, blood gas status, and meat quality in broiler chickens. Agricul. Switzerland, v.10, n.5, p.176, 2020. doi: https://doi.org/10.3390/agriculture10050176
SINDHURAKAR, A.; BRADLEY, N.S. Kinematic analysis of overground locomotion in chicks incubated under different light conditions. Develop. Psychobiol., v.52, n.8, p.802-812, 2010. doi: https://doi.org/10.1002/dev.20476
VIEIRA, F.M.C. et al. Termorregulação de pintos de um dia submetidos a ambiente térmico simulado de transporte. Arq. Bras. Med. Vet. Zootec., v.68, n.1, p.208-214, 2016. doi: https://doi.org/10.1590/1678-4162-7871
VIEIRA, F.M.C. et al. Impact of exposure time to harsh environments on physiology, mortality, and thermal comfort of day-old chickens in a simulated condition of transport. Int. J. Biometeorol., v.63, n.6, p.777-785, 2019. doi: https://doi.org/10.1007/s00484-019-01691-4
YERPES, M.; LLONCH, P.; MANTECA, X. Effect of environmental conditions during transport on chick weight loss and mortality. Poultry Sci, v.100, n.1, p.129-137, 2021. doi: https://doi.org/10.1016/j.psj.2020.10.003
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Adam Rotava Herget, Raphael Odebrecht De Souza, Fernanda Perazzolo Disconzi

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.