Bioremediation Potential of Basidiomycetes in a Medium with Apple-Based Detergent

Authors

  • David Patrick Almeida Correia Universidade Federal de Sergipe, Departamento de Engenharia Agronômica, Laboratório de Microbiologia. Campus São Cristóvão, SE, Brasil. https://orcid.org/0000-0002-1494-0920
  • Michele Santos De Jesus Universidade Federal de Sergipe, Departamento de Engenharia Agronômica, Laboratório de Microbiologia. Campus São Cristóvão, SE, Brasil. https://orcid.org/0000-0001-6163-9412
  • Leonel Bismarck Belo Bismarck Belo Pereira Universidade Federal de Sergipe, Departamento de Engenharia Agronômica, Laboratório de Microbiologia. Campus São Cristóvão, SE, Brasil. https://orcid.org/0000-0001-6933-5691
  • Igor Daniel Alves Ribeiro Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Programa de Pós-Graduação em Genética e Biologia Molecular. RS, Brasil. https://orcid.org/0000-0002-1220-3302
  • Luciane Maria Pereira Passaglia Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Programa de Pós-Graduação em Genética e Biologia Molecular. RS, Brasil. https://orcid.org/0000-0001-5011-9120
  • Eliana Midori Sussuchi Universidade Federal de Sergipe, Departamento de Química, Laboratório de Corrosão e Nanotecnologia/NUPEG. Campus São Cristóvão. SE, Brasil. https://orcid.org/0000-0001-9425-0921
  • Pedro Roberto Almeida Viégas Universidade Federal de Sergipe, Departamento de Engenharia Agronômica. Campus São Cristóvão. SE, Brasil. https://orcid.org/0000-0001-6007-6726
  • Regina Helena Marino Universidade Federal de Sergipe, Departamento de Engenharia Agronômica, Laboratório de Microbiologia. Campus São Cristóvão. SE, Brasil. https://orcid.org/0000-0002-7295-3746

DOI:

https://doi.org/10.17921/1415-6938.2025v29n1p212-230

Abstract

The extensive use of detergents and inadequate waste disposal practices have caused significant environmental pollution. To mitigate these effects, this study aimed to evaluate the bioremediation potential of the basidiomycetes Lentinula edodes (LED 96/18) and Pycnoporus sanguineus (PS) in a medium containing apple-based detergent, with or without methylene blue, as well as the phytotoxicity of these mediums following fungal colonization. The following bioassays were carried out: (1) Influence of apple-based detergent on mycelial growth in potato-dextrose-agar (PDA) and sawdust; 2) In vitro bioremediation potential of fungal isolates in PDA, detergent, and methylene blue; 3) Degradation of the detergent and methylene blue by fungal isolates; and 4) Phytotoxicity of the detergent and methylene blue after fungal cultivation.  The apple-based detergent inhibited the mycelial growth of LED96/18 and PS at 200 µL.L-1. The detergent-dye medium inhibited the growth of PS, but stimulated the growth of LED 96/18. PS and LED 96/18 promoted the decolorization of 32.7% of the detergent-dye medium. The detergent-dye medium, with and without fungal colonization, did not inhibited the germination of 'Rasteiro Rio Grande' tomato seeds, but negatively influenced the growth of the radicle with the increase from 1% to 10% of the medium. The isolates LED 96/18 and PS show promise for in vitro bioremediation of a medium containing apple detergent and methylene blue.

Keywords: Phytotoxicity. Mushroom. Environmental Microbiology.

Resumo

O uso extensivo de detergentes e práticas inadequadas de descarte de resíduos tem causado significativa poluição ambiental. Para mitigar esses efeitos, este estudo teve como objetivo avaliar o potencial de biorremediação dos basidiomicetos Lentinula edodes (LED 96/18) e Pycnoporus sanguineus (PS) em meio de cultura contendo detergente à base de maçã, com ou sem azul de metileno, bem como a fitotoxicidade destes meios após a colonização fúngica. Foram realizados os seguintes bioensaios: 1) Influência do detergente à base de maçã no crescimento micelial em meio batata-dextrose-ágar (BDA) suplementado com serragem; 2) Potencial de biorremediação in vitro de isolados fúngicos em BDA, detergente e azul de metileno; 3) Degradação do detergente e do azul de metileno pelos isolados fúngicos; e 4) Fitotoxicidade do detergente e do azul de metileno após cultivo fúngico. O detergente à base de maçã inibiu o crescimento micelial do LED96/18 e do PS a 200 µL.L-1. O meio detergente-azul de metileno inibiu o crescimento do PS, mas estimulou o crescimento do LED 96/18. PS e LED 96/18 promoveram a descoloração de 32,7% do meio detergente-corante. O meio detergente-corante, com e sem colonização fúngica, não inibiu a germinação de sementes de tomate ‘Rasteiro Rio Grande’, mas influenciou negativamente no crescimento da radícula com o aumento de 1% para 10% do meio. Os isolados LED 96/18 e PS têm potencial de biorremediação in vitro de meio com detergente de maçã e azul de metileno.

Palavras-chave: Fitotoxicidade. Cogumelos. Microbiologia Ambiental.

Downloads

Download data is not yet available.

References

AISWARYA, C.; NAYANA, P.; NAMBISAN, P. Data of optimization of laccase production by Marasmiellus palmivorus LA1 under solid state fermentation using one factor at a time method. Data in Brief, v.17, p.1276-1282, 2018. doi: https://doi.org/10.1016/j.dib.2018.02.011

ALIPPI, A.M.; AGUILAR, O.M. Characterization of isolates of Paenibacillus larvae sub sp. larvae from diverse geographical origin by the polymerase chain reaction and BOX primers. J. Invertebr. Pathol., v.72, n.1, p.21-27, 1998.

ANICETO, A.P.P.; IRAZUSTA, S.P. Bioremediation of lead contaminated soils: review. Braz. J. Bus., v.5, n.1, p.40-52, 2023. doi: https://doi.org/10.3390/app10103528

ARAÚJO, I.F. et al. Efeito do pH na atividade de lacase e na descoloração de corantes industriais por extrato enzimático de Panus lecomtei. Sci. Amazonica, v.8, n.3, p.cb6-cb15, 2019.

BACKES, E. et al. Overproduction of laccase by Trametes versicolor and Pycnoporus sanguineus in farnesol-pineapple waste solid fermentation. Fermentation, v.9, n.2, art. 188, 2023. doi: https://doi.org/10.1001/jama.2021.11684

BAFANA, A. Identification and characterization of azoreductase enzyme AzoR2 from Bacillus velezensis for biodegradation of azo dyes. Int. Biodeter. Biodegr., v.167, art. 105351, 2022. doi: https://doi.org/10.1016/j.ibiod.2021.105351

BAGUR-GONZALES, M.G. et al. Toxicity assessment using Lactuca sativa L. bioassay of the metal(loid)s As, Cu, Mn, Pb and Zn in soluble-in-water saturated soil extracts from an abandoned mining site. J. Soils Sediment., v.11, p.281–289, 2011.

BARNETT, H.L.; HUNTER, B. B. Illustrated genera of imperfect fungi. Ohio: Ed. Amer Phytopathological Society, 1998.

BELTRANE, L.; OLIVEIRA, L.F.; LIMEIRA, D.M. Environmental Biotechnology in northern Paraná: a systematic review of recent literature. Res., Soc. Dev., v.12, n.11, art. e.14121143562, 2023. doi: https://doi.org/10.33448/rsd-v12i11.43562.

BOURAS, H.D. et al. Biosorption characteristic of methylene blue dye by two fungal biomasses. Int. J. Environ. Sci., v.78, n.3, p.365-381, 2021. doi: https://doi.org/10.1080/00207233.2020.1745573

BRASIL. Agência Nacional de Águas. Ministério do Meio Ambiente. Atlas esgotos: despoluição de bacias hidrográficas. Brasília: ANA, 2017.

BRASIL. Agência Nacional de Vigilância Sanitária. Resolução da Diretoria Colegiada n o 694, de 13/05/2022. Brasília: ANVISA, 2022.

CESAR-RIBEIRO, C.; PRADO, T.S.; ROSA, H.C. Surfactants in sedimend of Itanhaém Estuary, São Paulo, Brasil. J. Surfact. Deterg., v.25, p.281-288, 2022.

CETESB. Qualidade das águas interiores no estado de São Paulo 2021. São Paulo: CETESB, 2022. doi: https://doi.org/10.1002/jsde.12551

COELHO, M.P.S.L.V. et al. Alternative nutritional sources for the development of the mycelial phase and production of hydrolases by edible mushroom from tropical forest. Braz. J. Dev., v.7, n.3, p.22890-22907, 2021. doi: https://doi.org/10.34117/bjdv7n3-145

COSTA, M.F.; OLIVEIRA, A.M.; OLIVEIRA JR, E.N. Biodegradation of linear alkylbenzene sulfonate (LAS) by Penicillium chrysogenum. Bioresour. Technol. Rep., v.9, art. 100363, 2020. doi: https://doi.org/10.1016/j.biteb.2019.100363

DOI, S.M.O.; OTAGUIRI, E.S.; SOUZA, A.F. Biodegradation of textile industry effluent and dyes by Pleurotus ostreatus and Pycnoporus spp. Braz. J. Anim. Environ. Res., v.4, n.3, p.3226-3233, 2021. doi: https://doi.org/10.34188/bjaerv4n3-034

EDGAR, R.C. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics, v.5, art. 113, 2004.

EFFENDI, I. et al. Detergent disposal into our environment and its impact on marine microbes. IOP Conf. Ser. Earth and Environ. Sci., v.97, art. 012030, 2017. doi: https://doi.org/10.1088/1755-1315/97/1/012030

EHILEN, O.E. et al. The effect of detergents on the germination and growth of Amaranthus hybridus L. and Solanum lycopersicon L. Niger. Ann. Nat. Sci., v.16, n.1, p.100-108, 2017.

EICHLEROVÁ, I.; BALDRIAN, P. Ligninolytic enzyme production and decolorization capacity of synthetic dyes by saprotrophic white rot, brown rot, and litter decomposing basidiomycetes. J. Fungi, v.6, n.4, p.301-323, 2020. doi: https://doi.org/10.3390/jof6040301

FREITAS, E.N.D. et al. Enzymatic pretreatment with laccases from Lentinus sajor-caju induces structural modification in lignin and enhances the digestibility of tropical forage grass (Panicum maximum) grown under future climate conditions. Int. J. Mol. Sci., v.22, n.17, art. 9445, 2021.

GUEVARRA, M.D.F. et al. Fitotoxicidade em águas residuárias domésticas utilizando sementes como bioindicadores. Rev. DAE, v.67, n.216, p.44-51, 2019.

HADIBARATA, T.; KRISTANTI, R.A. Effect of surfactants and identification of metabolites on the biodegradation of fluoranthene by basidiomycetes fungal isolate Armillaria sp. F022. Bioproc. Biosyst. Eng., v.37, n.4, p.593-600, 2014. doi: https://doi.org/10.1007/s00449-013-1025-0

HERNÁNDEZ-BRANDA, Y. et al. Effect of detergents on the germination and initial growth habanero pepper (Capsicum chinense Jacq.) plants. Rev. Colomb. Ciênc. Hortíc., v.17, n.3, e16577, 2023. doi: https://doi.org/10.17584/rcch.2023v17i3.16577

HUANG, X.; MADAN, A. CAP3: A DNA Sequence Assembly Program. Genome Res., v.9, p.868-877, 1999.

KAIDA, H. et al. Biodegradation of Linear Alkylbenzene Sulfonates (LAS): a mini review. Bioremediat. Sci. Technol. Res.,v.9, n.1, p.1-6, 2021. doi: https://doi.org/10.54987/bstr.v9i1.590

KANAGARAJ, J.; SENTHILVELAN, T.; PANDA, R. Degradation of azo dyes by laccase: biological method to reduce pollution load in dye wastewater. Clean Technol. Environ. Policy, v.17, n.6, p.1443-1456, 2015.

KHATAMI, S.H. et al. Laccase: various types and applications. Biotec. App. Bioch., v.69, n.6, p.2658-2672, 2022. doi: https://doi.org/10.1002/bab.2313

KIM, Y. et al. Purification and characterization of laccase from the medicinal wild mushroom Coriolus brevis. Process Bioch., v.146, p.13,20, 2024. doi: https://doi.org/10.1016/j.procbio.2024.07.019

KOGAWA, A.C. et al. Synthetic detergents: 100 years of history. Saudi Pharm. J., v.25, n.6, p.934-938, 2017.

LETUNIC, I.; BORK, P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res., v.47, n.W1, p.W256–W259, 2019.

LIU, C. et al. Heterologous expression of laccase from Lentinula edodes in Pichia pastoris and its application in degrading rape straw. Front. Microbiol., v.11, art. 1086, 2020. doi: https://doi.org/10.3389/fmicb.2020.01086

LIU, X.; DENG, W.; YANG, Y. Characterization of a Novel Laccase LAC-Yang1 from White-Rot fungus Pleurotus ostreatus strain Yang with a strong ability to degrade and detoxify chlorophenols. Molecules, v.26, n.2, p.473-504, 2021. doi: https://doi.org/10.3390/molecules26020473

MASTROTI, R.R. et al. Avaliação preliminar da biodegradabilidade de tensoativos aniônicos em água do mar. Rev. Bras. Oceonogr., v.46, n.2, p.187-193, 1998.

MATHUR, P.; SANYAL, D.; DEY, P. Optimization of growth conditions for enhancing the production of microbial laccase and its application in treating antibiotic contamination in wastewater. 3 Biotech, v.11, 2021. doi: https://doi.org/10.1007/s13205-020-02627-1

MENEZES, G.S. et al. Bioremediation potential of filamentous fungi in methylene blue: solid and liquid culture media. Ciênc. Agrotec., v.41, n.5, p.526-532, 2017.

MINH, B.Q. et al. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic Era. Mol. Biol. Evo., v.37, n.5, p.530-1534, 2020. doi: https://doi.org/10.1093/molbev/msaa015

MIRANDA, F.R. et al. Cultivo protegido de tomate cereja, em substrato, na região da Ibiapaba, Ceará. Fortaleza: Embrapa, 2023.

OKONECHNIKOV, K.; GOLOSOVA, O.; FURSOV, M. Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics, v.28, n.8, p.1166–1167, 2012.

RAINEY, F.A. et al. The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int. J. Syst. Evol. Microbiol., v.46, n.4, p.1088–1092, 1966.

SAMBROOK, J.; RUSSEL, D. Molecular cloning: a laboratory manual. New York: Cold Spring, 2001.

SANTOS, I.C.S. et al. Biorremediação fúngica e estudo de fitotoxidade de efluentes industrial proveniente de planta produtora de pesticidas. Rev. Proc. Quim., v.17, n.33, p.49-55, 2023. doi: https://doi.org/10.19142/rpq.v17i33.681

SILVA, FC. Manual de análises químicas de solos, plantas e fertilizantes. Brasília: Embrapa Informação Tecnológica, 2009.

SILVA, F.G.; LEDO, B. Aspectos regulatórios e seus efeitos no setor de água e esgoto do Brasil. Rev. Defesa Concorrência, v.11, n.1, p.127-148, 2023.

SINGH, L. Biodegradation of synthetic dyes: a mycoremediation approach for degradation/decolourization of textile dyes and effluents. J. App. Biotechnol., v.3, n.5, art. 00081, 2017.

SILVA, I.; MOREIRA, J. Resíduos agroindustriais do Vale do Ivaí-PR: potencial biotecnológico para a produção de cogumelos comestíveis e enzimas industriais. Rev. Terra & Cultura Cad. Ensino Pesq., v.40, n.7, p.e3119, 2024.

SOBRINO-FIGUEROA, A. Toxic effect of commercial detergents on organisms from different trophic levels. Environ. Sci. Pollut. Res., v.25, p.13283-13291, 2018. doi: https://doi.org/10.1007/s11356-016-7861-0

SU, J.; RODRIGUES, D.C.G.A. Cinética de crescimento radial de fungos isolados em corante laranja ácido 7. Congr. Bras. Ciênc. Saberes Multidiscipl., v.1, p.1-9, 2022. doi: https://doi.org/10.47385/tudoeciencia.32.2022

TALUKDAR, D. et al. Evaluation of novel indigenous fungal consortium for enhanced bioremediation of heavy metals from contaminated sites. Environ. Technol. Inno., v.20, art. 101050, 2020. doi: https://doi.org/10.1016/j.eti.2020.101050

TISO, T. et al. The metabolic potential of plastics as biotechnological carbon sources – Review and -targets for the future. Metabolic Eng., v.71, p.77-98, 2022.

TOLEDO, N.A.B.; CONTRERAS, C.H.; CORREDOR, C.A.A.; PÉREZ, C.A.R. Effect of biodegradable detergents on water quality. Nat. Volatiles & Essent. Oils, v.8, n.5, p.12080-12095, 2021.

TORRES-FARRADÁ, G.; THIJS, S.; RINEAU, F.; GUERRA, G.; VANGRONSVELD, J. White rot fungi as tools for the bioremediation of xenobiotics: a review. J. Fungi, v.10, art. 167, 2024. doi: https://doi.org/10.3390/jof10030167

YADAV, J.S. et al. Biotransformation of linear alkylbenzene sulfonate (LAS) by Phanerochaete chrysosporium : oxidation of alkyl side-chain. Biodegrad. v.12, p.443–453, 2001.

ZHAO, S. et al. Detoxification of tetracycline and synthetic dyes by a newly characterized Lentinula edodes laccase, and safety assessment using proteomic analysis. Ecotoxicol. Environ. Saf., v.276, art. 116324, 2024. doi: https://doi.org/10.1016/j.ecoenv.2024.116324

Downloads

Published

2025-03-03

How to Cite

ALMEIDA CORREIA, David Patrick; SANTOS DE JESUS, Michele; BISMARCK BELO PEREIRA, Leonel Bismarck Belo; ALVES RIBEIRO, Igor Daniel; PEREIRA PASSAGLIA, Luciane Maria; MIDORI SUSSUCHI, Eliana; ALMEIDA VIÉGAS, Pedro Roberto; MARINO, Regina Helena. Bioremediation Potential of Basidiomycetes in a Medium with Apple-Based Detergent. Ensaios e Ciência: Ciências Biológicas, Agrárias e da Saúde, [S. l.], v. 29, n. 1, p. 212–230, 2025. DOI: 10.17921/1415-6938.2025v29n1p212-230. Disponível em: https://ensaioseciencia.pgsscogna.com.br/ensaioeciencia/article/view/13613. Acesso em: 22 apr. 2025.

Issue

Section

Articles